Search

Search Results (331932 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71189 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: dw: dmamux: fix OF node leak on route allocation failure Make sure to drop the reference taken to the DMA master OF node also on late route allocation failures.
CVE-2025-71188 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: lpc18xx-dmamux: fix device leak on route allocation Make sure to drop the reference taken when looking up the DMA mux platform device during route allocation. Note that holding a reference to a device does not prevent its driver data from going away so there is no point in keeping the reference.
CVE-2025-71187 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: sh: rz-dmac: fix device leak on probe failure Make sure to drop the reference taken when looking up the ICU device during probe also on probe failures (e.g. probe deferral).
CVE-2025-71186 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: stm32: dmamux: fix device leak on route allocation Make sure to drop the reference taken when looking up the DMA mux platform device during route allocation. Note that holding a reference to a device does not prevent its driver data from going away so there is no point in keeping the reference.
CVE-2025-71185 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: dma-crossbar: fix device leak on am335x route allocation Make sure to drop the reference taken when looking up the crossbar platform device during am335x route allocation.
CVE-2025-71184 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix NULL dereference on root when tracing inode eviction When evicting an inode the first thing we do is to setup tracing for it, which implies fetching the root's id. But in btrfs_evict_inode() the root might be NULL, as implied in the next check that we do in btrfs_evict_inode(). Hence, we either should set the ->root_objectid to 0 in case the root is NULL, or we move tracing setup after checking that the root is not NULL. Setting the rootid to 0 at least gives us the possibility to trace this call even in the case when the root is NULL, so that's the solution taken here.
CVE-2025-71183 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: always detect conflicting inodes when logging inode refs After rename exchanging (either with the rename exchange operation or regular renames in multiple non-atomic steps) two inodes and at least one of them is a directory, we can end up with a log tree that contains only of the inodes and after a power failure that can result in an attempt to delete the other inode when it should not because it was not deleted before the power failure. In some case that delete attempt fails when the target inode is a directory that contains a subvolume inside it, since the log replay code is not prepared to deal with directory entries that point to root items (only inode items). 1) We have directories "dir1" (inode A) and "dir2" (inode B) under the same parent directory; 2) We have a file (inode C) under directory "dir1" (inode A); 3) We have a subvolume inside directory "dir2" (inode B); 4) All these inodes were persisted in a past transaction and we are currently at transaction N; 5) We rename the file (inode C), so at btrfs_log_new_name() we update inode C's last_unlink_trans to N; 6) We get a rename exchange for "dir1" (inode A) and "dir2" (inode B), so after the exchange "dir1" is inode B and "dir2" is inode A. During the rename exchange we call btrfs_log_new_name() for inodes A and B, but because they are directories, we don't update their last_unlink_trans to N; 7) An fsync against the file (inode C) is done, and because its inode has a last_unlink_trans with a value of N we log its parent directory (inode A) (through btrfs_log_all_parents(), called from btrfs_log_inode_parent()). 8) So we end up with inode B not logged, which now has the old name of inode A. At copy_inode_items_to_log(), when logging inode A, we did not check if we had any conflicting inode to log because inode A has a generation lower than the current transaction (created in a past transaction); 9) After a power failure, when replaying the log tree, since we find that inode A has a new name that conflicts with the name of inode B in the fs tree, we attempt to delete inode B... this is wrong since that directory was never deleted before the power failure, and because there is a subvolume inside that directory, attempting to delete it will fail since replay_dir_deletes() and btrfs_unlink_inode() are not prepared to deal with dir items that point to roots instead of inodes. When that happens the mount fails and we get a stack trace like the following: [87.2314] BTRFS info (device dm-0): start tree-log replay [87.2318] BTRFS critical (device dm-0): failed to delete reference to subvol, root 5 inode 256 parent 259 [87.2332] ------------[ cut here ]------------ [87.2338] BTRFS: Transaction aborted (error -2) [87.2346] WARNING: CPU: 1 PID: 638968 at fs/btrfs/inode.c:4345 __btrfs_unlink_inode+0x416/0x440 [btrfs] [87.2368] Modules linked in: btrfs loop dm_thin_pool (...) [87.2470] CPU: 1 UID: 0 PID: 638968 Comm: mount Tainted: G W 6.18.0-rc7-btrfs-next-218+ #2 PREEMPT(full) [87.2489] Tainted: [W]=WARN [87.2494] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [87.2514] RIP: 0010:__btrfs_unlink_inode+0x416/0x440 [btrfs] [87.2538] Code: c0 89 04 24 (...) [87.2568] RSP: 0018:ffffc0e741f4b9b8 EFLAGS: 00010286 [87.2574] RAX: 0000000000000000 RBX: ffff9d3ec8a6cf60 RCX: 0000000000000000 [87.2582] RDX: 0000000000000002 RSI: ffffffff84ab45a1 RDI: 00000000ffffffff [87.2591] RBP: ffff9d3ec8a6ef20 R08: 0000000000000000 R09: ffffc0e741f4b840 [87.2599] R10: ffff9d45dc1fffa8 R11: 0000000000000003 R12: ffff9d3ee26d77e0 [87.2608] R13: ffffc0e741f4ba98 R14: ffff9d4458040800 R15: ffff9d44b6b7ca10 [87.2618] FS: 00007f7b9603a840(0000) GS:ffff9d4658982000(0000) knlGS:0000000000000000 [87. ---truncated---
CVE-2025-71182 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: j1939: make j1939_session_activate() fail if device is no longer registered syzbot is still reporting unregister_netdevice: waiting for vcan0 to become free. Usage count = 2 even after commit 93a27b5891b8 ("can: j1939: add missing calls in NETDEV_UNREGISTER notification handler") was added. A debug printk() patch found that j1939_session_activate() can succeed even after j1939_cancel_active_session() from j1939_netdev_notify(NETDEV_UNREGISTER) has completed. Since j1939_cancel_active_session() is processed with the session list lock held, checking ndev->reg_state in j1939_session_activate() with the session list lock held can reliably close the race window.
CVE-2025-71181 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: rust_binder: remove spin_lock() in rust_shrink_free_page() When forward-porting Rust Binder to 6.18, I neglected to take commit fb56fdf8b9a2 ("mm/list_lru: split the lock to per-cgroup scope") into account, and apparently I did not end up running the shrinker callback when I sanity tested the driver before submission. This leads to crashes like the following: ============================================ WARNING: possible recursive locking detected 6.18.0-mainline-maybe-dirty #1 Tainted: G IO -------------------------------------------- kswapd0/68 is trying to acquire lock: ffff956000fa18b0 (&l->lock){+.+.}-{2:2}, at: lock_list_lru_of_memcg+0x128/0x230 but task is already holding lock: ffff956000fa18b0 (&l->lock){+.+.}-{2:2}, at: rust_helper_spin_lock+0xd/0x20 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&l->lock); lock(&l->lock); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kswapd0/68: #0: ffffffff90d2e260 (fs_reclaim){+.+.}-{0:0}, at: kswapd+0x597/0x1160 #1: ffff956000fa18b0 (&l->lock){+.+.}-{2:2}, at: rust_helper_spin_lock+0xd/0x20 #2: ffffffff90cf3680 (rcu_read_lock){....}-{1:2}, at: lock_list_lru_of_memcg+0x2d/0x230 To fix this, remove the spin_lock() call from rust_shrink_free_page().
CVE-2025-71180 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: counter: interrupt-cnt: Drop IRQF_NO_THREAD flag An IRQ handler can either be IRQF_NO_THREAD or acquire spinlock_t, as CONFIG_PROVE_RAW_LOCK_NESTING warns: ============================= [ BUG: Invalid wait context ] 6.18.0-rc1+git... #1 ----------------------------- some-user-space-process/1251 is trying to lock: (&counter->events_list_lock){....}-{3:3}, at: counter_push_event [counter] other info that might help us debug this: context-{2:2} no locks held by some-user-space-process/.... stack backtrace: CPU: 0 UID: 0 PID: 1251 Comm: some-user-space-process 6.18.0-rc1+git... #1 PREEMPT Call trace: show_stack (C) dump_stack_lvl dump_stack __lock_acquire lock_acquire _raw_spin_lock_irqsave counter_push_event [counter] interrupt_cnt_isr [interrupt_cnt] __handle_irq_event_percpu handle_irq_event handle_simple_irq handle_irq_desc generic_handle_domain_irq gpio_irq_handler handle_irq_desc generic_handle_domain_irq gic_handle_irq call_on_irq_stack do_interrupt_handler el0_interrupt __el0_irq_handler_common el0t_64_irq_handler el0t_64_irq ... and Sebastian correctly points out. Remove IRQF_NO_THREAD as an alternative to switching to raw_spinlock_t, because the latter would limit all potential nested locks to raw_spinlock_t only.
CVE-2025-71163 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: fix device leaks on compat bind and unbind Make sure to drop the reference taken when looking up the idxd device as part of the compat bind and unbind sysfs interface.
CVE-2025-71162 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: tegra-adma: Fix use-after-free A use-after-free bug exists in the Tegra ADMA driver when audio streams are terminated, particularly during XRUN conditions. The issue occurs when the DMA buffer is freed by tegra_adma_terminate_all() before the vchan completion tasklet finishes accessing it. The race condition follows this sequence: 1. DMA transfer completes, triggering an interrupt that schedules the completion tasklet (tasklet has not executed yet) 2. Audio playback stops, calling tegra_adma_terminate_all() which frees the DMA buffer memory via kfree() 3. The scheduled tasklet finally executes, calling vchan_complete() which attempts to access the already-freed memory Since tasklets can execute at any time after being scheduled, there is no guarantee that the buffer will remain valid when vchan_complete() runs. Fix this by properly synchronizing the virtual channel completion: - Calling vchan_terminate_vdesc() in tegra_adma_stop() to mark the descriptors as terminated instead of freeing the descriptor. - Add the callback tegra_adma_synchronize() that calls vchan_synchronize() which kills any pending tasklets and frees any terminated descriptors. Crash logs: [ 337.427523] BUG: KASAN: use-after-free in vchan_complete+0x124/0x3b0 [ 337.427544] Read of size 8 at addr ffff000132055428 by task swapper/0/0 [ 337.427562] Call trace: [ 337.427564] dump_backtrace+0x0/0x320 [ 337.427571] show_stack+0x20/0x30 [ 337.427575] dump_stack_lvl+0x68/0x84 [ 337.427584] print_address_description.constprop.0+0x74/0x2b8 [ 337.427590] kasan_report+0x1f4/0x210 [ 337.427598] __asan_load8+0xa0/0xd0 [ 337.427603] vchan_complete+0x124/0x3b0 [ 337.427609] tasklet_action_common.constprop.0+0x190/0x1d0 [ 337.427617] tasklet_action+0x30/0x40 [ 337.427623] __do_softirq+0x1a0/0x5c4 [ 337.427628] irq_exit+0x110/0x140 [ 337.427633] handle_domain_irq+0xa4/0xe0 [ 337.427640] gic_handle_irq+0x64/0x160 [ 337.427644] call_on_irq_stack+0x20/0x4c [ 337.427649] do_interrupt_handler+0x7c/0x90 [ 337.427654] el1_interrupt+0x30/0x80 [ 337.427659] el1h_64_irq_handler+0x18/0x30 [ 337.427663] el1h_64_irq+0x7c/0x80 [ 337.427667] cpuidle_enter_state+0xe4/0x540 [ 337.427674] cpuidle_enter+0x54/0x80 [ 337.427679] do_idle+0x2e0/0x380 [ 337.427685] cpu_startup_entry+0x2c/0x70 [ 337.427690] rest_init+0x114/0x130 [ 337.427695] arch_call_rest_init+0x18/0x24 [ 337.427702] start_kernel+0x380/0x3b4 [ 337.427706] __primary_switched+0xc0/0xc8
CVE-2025-71161 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm-verity: disable recursive forward error correction There are two problems with the recursive correction: 1. It may cause denial-of-service. In fec_read_bufs, there is a loop that has 253 iterations. For each iteration, we may call verity_hash_for_block recursively. There is a limit of 4 nested recursions - that means that there may be at most 253^4 (4 billion) iterations. Red Hat QE team actually created an image that pushes dm-verity to this limit - and this image just makes the udev-worker process get stuck in the 'D' state. 2. It doesn't work. In fec_read_bufs we store data into the variable "fio->bufs", but fio bufs is shared between recursive invocations, if "verity_hash_for_block" invoked correction recursively, it would overwrite partially filled fio->bufs.
CVE-2025-71160 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: avoid chain re-validation if possible Hamza Mahfooz reports cpu soft lock-ups in nft_chain_validate(): watchdog: BUG: soft lockup - CPU#1 stuck for 27s! [iptables-nft-re:37547] [..] RIP: 0010:nft_chain_validate+0xcb/0x110 [nf_tables] [..] nft_immediate_validate+0x36/0x50 [nf_tables] nft_chain_validate+0xc9/0x110 [nf_tables] nft_immediate_validate+0x36/0x50 [nf_tables] nft_chain_validate+0xc9/0x110 [nf_tables] nft_immediate_validate+0x36/0x50 [nf_tables] nft_chain_validate+0xc9/0x110 [nf_tables] nft_immediate_validate+0x36/0x50 [nf_tables] nft_chain_validate+0xc9/0x110 [nf_tables] nft_immediate_validate+0x36/0x50 [nf_tables] nft_chain_validate+0xc9/0x110 [nf_tables] nft_immediate_validate+0x36/0x50 [nf_tables] nft_chain_validate+0xc9/0x110 [nf_tables] nft_table_validate+0x6b/0xb0 [nf_tables] nf_tables_validate+0x8b/0xa0 [nf_tables] nf_tables_commit+0x1df/0x1eb0 [nf_tables] [..] Currently nf_tables will traverse the entire table (chain graph), starting from the entry points (base chains), exploring all possible paths (chain jumps). But there are cases where we could avoid revalidation. Consider: 1 input -> j2 -> j3 2 input -> j2 -> j3 3 input -> j1 -> j2 -> j3 Then the second rule does not need to revalidate j2, and, by extension j3, because this was already checked during validation of the first rule. We need to validate it only for rule 3. This is needed because chain loop detection also ensures we do not exceed the jump stack: Just because we know that j2 is cycle free, its last jump might now exceed the allowed stack size. We also need to update all reachable chains with the new largest observed call depth. Care has to be taken to revalidate even if the chain depth won't be an issue: chain validation also ensures that expressions are not called from invalid base chains. For example, the masquerade expression can only be called from NAT postrouting base chains. Therefore we also need to keep record of the base chain context (type, hooknum) and revalidate if the chain becomes reachable from a different hook location.
CVE-2025-71159 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free warning in btrfs_get_or_create_delayed_node() Previously, btrfs_get_or_create_delayed_node() set the delayed_node's refcount before acquiring the root->delayed_nodes lock. Commit e8513c012de7 ("btrfs: implement ref_tracker for delayed_nodes") moved refcount_set inside the critical section, which means there is no longer a memory barrier between setting the refcount and setting btrfs_inode->delayed_node. Without that barrier, the stores to node->refs and btrfs_inode->delayed_node may become visible out of order. Another thread can then read btrfs_inode->delayed_node and attempt to increment a refcount that hasn't been set yet, leading to a refcounting bug and a use-after-free warning. The fix is to move refcount_set back to where it was to take advantage of the implicit memory barrier provided by lock acquisition. Because the allocations now happen outside of the lock's critical section, they can use GFP_NOFS instead of GFP_ATOMIC.
CVE-2025-71158 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: gpio: mpsse: ensure worker is torn down When an IRQ worker is running, unplugging the device would cause a crash. The sealevel hardware this driver was written for was not hotpluggable, so I never realized it. This change uses a spinlock to protect a list of workers, which it tears down on disconnect.
CVE-2025-71157 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/core: always drop device refcount in ib_del_sub_device_and_put() Since nldev_deldev() (introduced by commit 060c642b2ab8 ("RDMA/nldev: Add support to add/delete a sub IB device through netlink") grabs a reference using ib_device_get_by_index() before calling ib_del_sub_device_and_put(), we need to drop that reference before returning -EOPNOTSUPP error.
CVE-2025-71156 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: gve: defer interrupt enabling until NAPI registration Currently, interrupts are automatically enabled immediately upon request. This allows interrupt to fire before the associated NAPI context is fully initialized and cause failures like below: [ 0.946369] Call Trace: [ 0.946369] <IRQ> [ 0.946369] __napi_poll+0x2a/0x1e0 [ 0.946369] net_rx_action+0x2f9/0x3f0 [ 0.946369] handle_softirqs+0xd6/0x2c0 [ 0.946369] ? handle_edge_irq+0xc1/0x1b0 [ 0.946369] __irq_exit_rcu+0xc3/0xe0 [ 0.946369] common_interrupt+0x81/0xa0 [ 0.946369] </IRQ> [ 0.946369] <TASK> [ 0.946369] asm_common_interrupt+0x22/0x40 [ 0.946369] RIP: 0010:pv_native_safe_halt+0xb/0x10 Use the `IRQF_NO_AUTOEN` flag when requesting interrupts to prevent auto enablement and explicitly enable the interrupt in NAPI initialization path (and disable it during NAPI teardown). This ensures that interrupt lifecycle is strictly coupled with readiness of NAPI context.
CVE-2025-71155 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: KVM: s390: Fix gmap_helper_zap_one_page() again A few checks were missing in gmap_helper_zap_one_page(), which can lead to memory corruption in the guest under specific circumstances. Add the missing checks.
CVE-2025-71154 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: usb: rtl8150: fix memory leak on usb_submit_urb() failure In async_set_registers(), when usb_submit_urb() fails, the allocated async_req structure and URB are not freed, causing a memory leak. The completion callback async_set_reg_cb() is responsible for freeing these allocations, but it is only called after the URB is successfully submitted and completes (successfully or with error). If submission fails, the callback never runs and the memory is leaked. Fix this by freeing both the URB and the request structure in the error path when usb_submit_urb() fails.