Search

Search Results (323850 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-7782 2 Wordpress, Wp-jobhunt Project 2 Wordpress, Wp-jobhunt 2025-12-23 7.6 High
The WP JobHunt plugin for WordPress, used by the JobCareer theme, is vulnerable to unauthorized modification of data due to a missing capability check on the 'cs_update_application_status_callback' function in all versions up to, and including, 7.7. This makes it possible for authenticated attackers, with Candidate-level access and above, to inject cross-site scripting into the 'status' parameter of applied jobs for any user.
CVE-2025-8065 1 Tp-link 3 Tapo, Tapo C200, Tapo C200 V3 2025-12-23 N/A
A buffer overflow vulnerability exists in the ONVIF XML parser of Tapo C200 V3. An unauthenticated attacker on the same local network segment can send specially crafted SOAP XML requests, causing memory overflow and device crash, resulting in denial-of-service (DoS).
CVE-2025-46295 2 Apache, Claris 2 Commons Text, Filemaker Server 2025-12-23 9.8 Critical
Apache Commons Text versions prior to 1.10.0 included interpolation features that could be abused when applications passed untrusted input into the text-substitution API. Because some interpolators could trigger actions like executing commands or accessing external resources, an attacker could potentially achieve remote code execution. This vulnerability has been fully addressed in FileMaker Server 22.0.4.
CVE-2025-66918 2 Edoc-doctor-appointment-system Project, Hashenudara 2 Edoc-doctor-appointment-system, Edoc-doctor-appointment-system 2025-12-23 8.8 High
edoc-doctor-appointment-system v1.0.1 is vulnerable to Cross Site Scripting (XSS) in admin/add-session.php via the "title" parameter.
CVE-2025-46296 1 Claris 1 Filemaker Server 2025-12-23 5.4 Medium
An authorization bypass vulnerability in FileMaker Server Admin Console allowed administrator roles with minimal privileges to access administrative features such as viewing license details and downloading application logs. This vulnerability has been fully addressed in FileMaker Server 22.0.4.
CVE-2025-46294 1 Claris 1 Filemaker Server 2025-12-23 5.3 Medium
To enhance security, the FileMaker Server 22.0.4 installer now includes an option to disable IIS short filename enumeration by setting NtfsDisable8dot3NameCreation in the Windows registry. This prevents attackers from using the tilde character to discover hidden files and directories. This vulnerability has been fully addressed in FileMaker Server 22.0.4. The IIS Shortname Vulnerability exploits how Microsoft IIS handles legacy 8.3 short filenames, allowing attackers to infer the existence of files or directories by crafting requests with the tilde (~) character.
CVE-2025-34392 2 Barracuda, Barracuda Networks 2 Rmm, Rmm 2025-12-23 9.8 Critical
Barracuda Service Center, as implemented in the RMM solution, in versions prior to 2025.1.1, does not verify the URL defined in an attacker-controlled WSDL that is later loaded by the application. This can lead to arbitrary file write and remote code execution via webshell upload.
CVE-2025-34393 2 Barracuda, Barracuda Networks 2 Rmm, Rmm 2025-12-23 9.8 Critical
Barracuda Service Center, as implemented in the RMM solution, in versions prior to 2025.1.1, does not correctly verify the name of an attacker-controlled WSDL service, leading to insecure reflection. This can result in remote code execution through either invocation of arbitrary methods or deserialization of untrusted types.
CVE-2025-34394 2 Barracuda, Barracuda Networks 2 Rmm, Rmm 2025-12-23 9.8 Critical
Barracuda Service Center, as implemented in the RMM solution, in versions prior to 2025.1.1, exposes a .NET Remoting service that is insufficiently protected against deserialization of arbitrary types. This can lead to remote code execution.
CVE-2025-34395 2 Barracuda, Barracuda Networks 2 Rmm, Rmm 2025-12-23 7.5 High
Barracuda Service Center, as implemented in the RMM solution, in versions prior to 2025.1.1, exposes a .NET Remoting service in which an unauthenticated attacker can invoke a method vulnerable to path traversal to read arbitrary files. This vulnerability can be escalated to remote code execution by retrieving the .NET machine keys.
CVE-2025-13733 1 Dr.buho 1 Buhontfs 2025-12-23 N/A
BuhoNTFS contains an insecure XPC service that allows local, unprivileged users to escalate their privileges to root via insecure functions.This issue affects BuhoNTFS: 1.3.2.
CVE-2025-34410 2 1panel, Fit2cloud 2 1panel, 1panel 2025-12-23 7.1 High
1Panel versions 1.10.33 - 2.0.15 contain a cross-site request forgery (CSRF) vulnerability in the Change Username functionality available from the settings panel (/settings/panel). The endpoint does not implement CSRF protections such as anti-CSRF tokens or Origin/Referer validation. An attacker can craft a malicious webpage that submits a username-change request; when a victim visits the page while authenticated, the browser includes valid session cookies and the request succeeds. This allows an attacker to change the victim’s 1Panel username without consent. After the change, the victim is logged out and unable to log in with the previous username, resulting in account lockout and denial of service.
CVE-2023-5094 2025-12-23 N/A
This CVE id was assigned to an issue which was later deemed not security relevant.
CVE-2023-5093 2025-12-23 N/A
This CVE id was assigned to an issue which was later deemed not security relevant.
CVE-2023-5092 2025-12-23 N/A
This CVE id was assigned to an issue which was later deemed not security relevant.
CVE-2022-50655 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ppp: associate skb with a device at tx Syzkaller triggered flow dissector warning with the following: r0 = openat$ppp(0xffffffffffffff9c, &(0x7f0000000000), 0xc0802, 0x0) ioctl$PPPIOCNEWUNIT(r0, 0xc004743e, &(0x7f00000000c0)) ioctl$PPPIOCSACTIVE(r0, 0x40107446, &(0x7f0000000240)={0x2, &(0x7f0000000180)=[{0x20, 0x0, 0x0, 0xfffff034}, {0x6}]}) pwritev(r0, &(0x7f0000000040)=[{&(0x7f0000000140)='\x00!', 0x2}], 0x1, 0x0, 0x0) [ 9.485814] WARNING: CPU: 3 PID: 329 at net/core/flow_dissector.c:1016 __skb_flow_dissect+0x1ee0/0x1fa0 [ 9.485929] skb_get_poff+0x53/0xa0 [ 9.485937] bpf_skb_get_pay_offset+0xe/0x20 [ 9.485944] ? ppp_send_frame+0xc2/0x5b0 [ 9.485949] ? _raw_spin_unlock_irqrestore+0x40/0x60 [ 9.485958] ? __ppp_xmit_process+0x7a/0xe0 [ 9.485968] ? ppp_xmit_process+0x5b/0xb0 [ 9.485974] ? ppp_write+0x12a/0x190 [ 9.485981] ? do_iter_write+0x18e/0x2d0 [ 9.485987] ? __import_iovec+0x30/0x130 [ 9.485997] ? do_pwritev+0x1b6/0x240 [ 9.486016] ? trace_hardirqs_on+0x47/0x50 [ 9.486023] ? __x64_sys_pwritev+0x24/0x30 [ 9.486026] ? do_syscall_64+0x3d/0x80 [ 9.486031] ? entry_SYSCALL_64_after_hwframe+0x63/0xcd Flow dissector tries to find skb net namespace either via device or via socket. Neigher is set in ppp_send_frame, so let's manually use ppp->dev.
CVE-2022-50435 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid crash when inline data creation follows DIO write When inode is created and written to using direct IO, there is nothing to clear the EXT4_STATE_MAY_INLINE_DATA flag. Thus when inode gets truncated later to say 1 byte and written using normal write, we will try to store the data as inline data. This confuses the code later because the inode now has both normal block and inline data allocated and the confusion manifests for example as: kernel BUG at fs/ext4/inode.c:2721! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 359 Comm: repro Not tainted 5.19.0-rc8-00001-g31ba1e3b8305-dirty #15 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014 RIP: 0010:ext4_writepages+0x363d/0x3660 RSP: 0018:ffffc90000ccf260 EFLAGS: 00010293 RAX: ffffffff81e1abcd RBX: 0000008000000000 RCX: ffff88810842a180 RDX: 0000000000000000 RSI: 0000008000000000 RDI: 0000000000000000 RBP: ffffc90000ccf650 R08: ffffffff81e17d58 R09: ffffed10222c680b R10: dfffe910222c680c R11: 1ffff110222c680a R12: ffff888111634128 R13: ffffc90000ccf880 R14: 0000008410000000 R15: 0000000000000001 FS: 00007f72635d2640(0000) GS:ffff88811b000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000565243379180 CR3: 000000010aa74000 CR4: 0000000000150eb0 Call Trace: <TASK> do_writepages+0x397/0x640 filemap_fdatawrite_wbc+0x151/0x1b0 file_write_and_wait_range+0x1c9/0x2b0 ext4_sync_file+0x19e/0xa00 vfs_fsync_range+0x17b/0x190 ext4_buffered_write_iter+0x488/0x530 ext4_file_write_iter+0x449/0x1b90 vfs_write+0xbcd/0xf40 ksys_write+0x198/0x2c0 __x64_sys_write+0x7b/0x90 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> Fix the problem by clearing EXT4_STATE_MAY_INLINE_DATA when we are doing direct IO write to a file.
CVE-2022-50409 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: If sock is dead don't access sock's sk_wq in sk_stream_wait_memory Fixes the below NULL pointer dereference: [...] [ 14.471200] Call Trace: [ 14.471562] <TASK> [ 14.471882] lock_acquire+0x245/0x2e0 [ 14.472416] ? remove_wait_queue+0x12/0x50 [ 14.473014] ? _raw_spin_lock_irqsave+0x17/0x50 [ 14.473681] _raw_spin_lock_irqsave+0x3d/0x50 [ 14.474318] ? remove_wait_queue+0x12/0x50 [ 14.474907] remove_wait_queue+0x12/0x50 [ 14.475480] sk_stream_wait_memory+0x20d/0x340 [ 14.476127] ? do_wait_intr_irq+0x80/0x80 [ 14.476704] do_tcp_sendpages+0x287/0x600 [ 14.477283] tcp_bpf_push+0xab/0x260 [ 14.477817] tcp_bpf_sendmsg_redir+0x297/0x500 [ 14.478461] ? __local_bh_enable_ip+0x77/0xe0 [ 14.479096] tcp_bpf_send_verdict+0x105/0x470 [ 14.479729] tcp_bpf_sendmsg+0x318/0x4f0 [ 14.480311] sock_sendmsg+0x2d/0x40 [ 14.480822] ____sys_sendmsg+0x1b4/0x1c0 [ 14.481390] ? copy_msghdr_from_user+0x62/0x80 [ 14.482048] ___sys_sendmsg+0x78/0xb0 [ 14.482580] ? vmf_insert_pfn_prot+0x91/0x150 [ 14.483215] ? __do_fault+0x2a/0x1a0 [ 14.483738] ? do_fault+0x15e/0x5d0 [ 14.484246] ? __handle_mm_fault+0x56b/0x1040 [ 14.484874] ? lock_is_held_type+0xdf/0x130 [ 14.485474] ? find_held_lock+0x2d/0x90 [ 14.486046] ? __sys_sendmsg+0x41/0x70 [ 14.486587] __sys_sendmsg+0x41/0x70 [ 14.487105] ? intel_pmu_drain_pebs_core+0x350/0x350 [ 14.487822] do_syscall_64+0x34/0x80 [ 14.488345] entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] The test scenario has the following flow: thread1 thread2 ----------- --------------- tcp_bpf_sendmsg tcp_bpf_send_verdict tcp_bpf_sendmsg_redir sock_close tcp_bpf_push_locked __sock_release tcp_bpf_push //inet_release do_tcp_sendpages sock->ops->release sk_stream_wait_memory // tcp_close sk_wait_event sk->sk_prot->close release_sock(__sk); *** lock_sock(sk); __tcp_close sock_orphan(sk) sk->sk_wq = NULL release_sock **** lock_sock(__sk); remove_wait_queue(sk_sleep(sk), &wait); sk_sleep(sk) //NULL pointer dereference &rcu_dereference_raw(sk->sk_wq)->wait While waiting for memory in thread1, the socket is released with its wait queue because thread2 has closed it. This caused by tcp_bpf_send_verdict didn't increase the f_count of psock->sk_redir->sk_socket->file in thread1. We should check if SOCK_DEAD flag is set on wakeup in sk_stream_wait_memory before accessing the wait queue.
CVE-2022-50020 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid resizing to a partial cluster size This patch avoids an attempt to resize the filesystem to an unaligned cluster boundary. An online resize to a size that is not integral to cluster size results in the last iteration attempting to grow the fs by a negative amount, which trips a BUG_ON and leaves the fs with a corrupted in-memory superblock.
CVE-2022-50012 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/64: Init jump labels before parse_early_param() On 64-bit, calling jump_label_init() in setup_feature_keys() is too late because static keys may be used in subroutines of parse_early_param() which is again subroutine of early_init_devtree(). For example booting with "threadirqs": static_key_enable_cpuslocked(): static key '0xc000000002953260' used before call to jump_label_init() WARNING: CPU: 0 PID: 0 at kernel/jump_label.c:166 static_key_enable_cpuslocked+0xfc/0x120 ... NIP static_key_enable_cpuslocked+0xfc/0x120 LR static_key_enable_cpuslocked+0xf8/0x120 Call Trace: static_key_enable_cpuslocked+0xf8/0x120 (unreliable) static_key_enable+0x30/0x50 setup_forced_irqthreads+0x28/0x40 do_early_param+0xa0/0x108 parse_args+0x290/0x4e0 parse_early_options+0x48/0x5c parse_early_param+0x58/0x84 early_init_devtree+0xd4/0x518 early_setup+0xb4/0x214 So call jump_label_init() just before parse_early_param() in early_init_devtree(). [mpe: Add call trace to change log and minor wording edits.]