| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
dm mirror log: round up region bitmap size to BITS_PER_LONG
The code in dm-log rounds up bitset_size to 32 bits. It then uses
find_next_zero_bit_le on the allocated region. find_next_zero_bit_le
accesses the bitmap using unsigned long pointers. So, on 64-bit
architectures, it may access 4 bytes beyond the allocated size.
Fix this bug by rounding up bitset_size to BITS_PER_LONG.
This bug was found by running the lvm2 testsuite with kasan. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: ftrace: consistently handle PLTs.
Sometimes it is necessary to use a PLT entry to call an ftrace
trampoline. This is handled by ftrace_make_call() and ftrace_make_nop(),
with each having *almost* identical logic, but this is not handled by
ftrace_modify_call() since its introduction in commit:
3b23e4991fb66f6d ("arm64: implement ftrace with regs")
Due to this, if we ever were to call ftrace_modify_call() for a callsite
which requires a PLT entry for a trampoline, then either:
a) If the old addr requires a trampoline, ftrace_modify_call() will use
an out-of-range address to generate the 'old' branch instruction.
This will result in warnings from aarch64_insn_gen_branch_imm() and
ftrace_modify_code(), and no instructions will be modified. As
ftrace_modify_call() will return an error, this will result in
subsequent internal ftrace errors.
b) If the old addr does not require a trampoline, but the new addr does,
ftrace_modify_call() will use an out-of-range address to generate the
'new' branch instruction. This will result in warnings from
aarch64_insn_gen_branch_imm(), and ftrace_modify_code() will replace
the 'old' branch with a BRK. This will result in a kernel panic when
this BRK is later executed.
Practically speaking, case (a) is vastly more likely than case (b), and
typically this will result in internal ftrace errors that don't
necessarily affect the rest of the system. This can be demonstrated with
an out-of-tree test module which triggers ftrace_modify_call(), e.g.
| # insmod test_ftrace.ko
| test_ftrace: Function test_function raw=0xffffb3749399201c, callsite=0xffffb37493992024
| branch_imm_common: offset out of range
| branch_imm_common: offset out of range
| ------------[ ftrace bug ]------------
| ftrace failed to modify
| [<ffffb37493992024>] test_function+0x8/0x38 [test_ftrace]
| actual: 1d:00:00:94
| Updating ftrace call site to call a different ftrace function
| ftrace record flags: e0000002
| (2) R
| expected tramp: ffffb374ae42ed54
| ------------[ cut here ]------------
| WARNING: CPU: 0 PID: 165 at kernel/trace/ftrace.c:2085 ftrace_bug+0x280/0x2b0
| Modules linked in: test_ftrace(+)
| CPU: 0 PID: 165 Comm: insmod Not tainted 5.19.0-rc2-00002-g4d9ead8b45ce #13
| Hardware name: linux,dummy-virt (DT)
| pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : ftrace_bug+0x280/0x2b0
| lr : ftrace_bug+0x280/0x2b0
| sp : ffff80000839ba00
| x29: ffff80000839ba00 x28: 0000000000000000 x27: ffff80000839bcf0
| x26: ffffb37493994180 x25: ffffb374b0991c28 x24: ffffb374b0d70000
| x23: 00000000ffffffea x22: ffffb374afcc33b0 x21: ffffb374b08f9cc8
| x20: ffff572b8462c000 x19: ffffb374b08f9000 x18: ffffffffffffffff
| x17: 6c6c6163202c6331 x16: ffffb374ae5ad110 x15: ffffb374b0d51ee4
| x14: 0000000000000000 x13: 3435646532346561 x12: 3437336266666666
| x11: 203a706d61727420 x10: 6465746365707865 x9 : ffffb374ae5149e8
| x8 : 336266666666203a x7 : 706d617274206465 x6 : 00000000fffff167
| x5 : ffff572bffbc4a08 x4 : 00000000fffff167 x3 : 0000000000000000
| x2 : 0000000000000000 x1 : ffff572b84461e00 x0 : 0000000000000022
| Call trace:
| ftrace_bug+0x280/0x2b0
| ftrace_replace_code+0x98/0xa0
| ftrace_modify_all_code+0xe0/0x144
| arch_ftrace_update_code+0x14/0x20
| ftrace_startup+0xf8/0x1b0
| register_ftrace_function+0x38/0x90
| test_ftrace_init+0xd0/0x1000 [test_ftrace]
| do_one_initcall+0x50/0x2b0
| do_init_module+0x50/0x1f0
| load_module+0x17c8/0x1d64
| __do_sys_finit_module+0xa8/0x100
| __arm64_sys_finit_module+0x2c/0x3c
| invoke_syscall+0x50/0x120
| el0_svc_common.constprop.0+0xdc/0x100
| do_el0_svc+0x3c/0xd0
| el0_svc+0x34/0xb0
| el0t_64_sync_handler+0xbc/0x140
| el0t_64_sync+0x18c/0x190
| ---[ end trace 0000000000000000 ]---
We can solve this by consistently determining whether to use a PLT entry
for an address.
Note that since (the earlier) commit:
f1a54ae9
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tunnels: do not assume mac header is set in skb_tunnel_check_pmtu()
Recently added debug in commit f9aefd6b2aa3 ("net: warn if mac header
was not set") caught a bug in skb_tunnel_check_pmtu(), as shown
in this syzbot report [1].
In ndo_start_xmit() paths, there is really no need to use skb->mac_header,
because skb->data is supposed to point at it.
[1] WARNING: CPU: 1 PID: 8604 at include/linux/skbuff.h:2784 skb_mac_header_len include/linux/skbuff.h:2784 [inline]
WARNING: CPU: 1 PID: 8604 at include/linux/skbuff.h:2784 skb_tunnel_check_pmtu+0x5de/0x2f90 net/ipv4/ip_tunnel_core.c:413
Modules linked in:
CPU: 1 PID: 8604 Comm: syz-executor.3 Not tainted 5.19.0-rc2-syzkaller-00443-g8720bd951b8e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:skb_mac_header_len include/linux/skbuff.h:2784 [inline]
RIP: 0010:skb_tunnel_check_pmtu+0x5de/0x2f90 net/ipv4/ip_tunnel_core.c:413
Code: 00 00 00 00 fc ff df 4c 89 fa 48 c1 ea 03 80 3c 02 00 0f 84 b9 fe ff ff 4c 89 ff e8 7c 0f d7 f9 e9 ac fe ff ff e8 c2 13 8a f9 <0f> 0b e9 28 fc ff ff e8 b6 13 8a f9 48 8b 54 24 70 48 b8 00 00 00
RSP: 0018:ffffc90002e4f520 EFLAGS: 00010212
RAX: 0000000000000324 RBX: ffff88804d5fd500 RCX: ffffc90005b52000
RDX: 0000000000040000 RSI: ffffffff87f05e3e RDI: 0000000000000003
RBP: ffffc90002e4f650 R08: 0000000000000003 R09: 000000000000ffff
R10: 000000000000ffff R11: 0000000000000000 R12: 000000000000ffff
R13: 0000000000000000 R14: 000000000000ffcd R15: 000000000000001f
FS: 00007f3babba9700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000080 CR3: 0000000075319000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
geneve_xmit_skb drivers/net/geneve.c:927 [inline]
geneve_xmit+0xcf8/0x35d0 drivers/net/geneve.c:1107
__netdev_start_xmit include/linux/netdevice.h:4805 [inline]
netdev_start_xmit include/linux/netdevice.h:4819 [inline]
__dev_direct_xmit+0x500/0x730 net/core/dev.c:4309
dev_direct_xmit include/linux/netdevice.h:3007 [inline]
packet_direct_xmit+0x1b8/0x2c0 net/packet/af_packet.c:282
packet_snd net/packet/af_packet.c:3073 [inline]
packet_sendmsg+0x21f4/0x55d0 net/packet/af_packet.c:3104
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg+0xcf/0x120 net/socket.c:734
____sys_sendmsg+0x6eb/0x810 net/socket.c:2489
___sys_sendmsg+0xf3/0x170 net/socket.c:2543
__sys_sendmsg net/socket.c:2572 [inline]
__do_sys_sendmsg net/socket.c:2581 [inline]
__se_sys_sendmsg net/socket.c:2579 [inline]
__x64_sys_sendmsg+0x132/0x220 net/socket.c:2579
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f3baaa89109
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f3babba9168 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f3baab9bf60 RCX: 00007f3baaa89109
RDX: 0000000000000000 RSI: 0000000020000a00 RDI: 0000000000000003
RBP: 00007f3baaae305d R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffe74f2543f R14: 00007f3babba9300 R15: 0000000000022000
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
dm raid: fix KASAN warning in raid5_add_disks
There's a KASAN warning in raid5_add_disk when running the LVM testsuite.
The warning happens in the test
lvconvert-raid-reshape-linear_to_raid6-single-type.sh. We fix the warning
by verifying that rdev->saved_raid_disk is within limits. |
| In the Linux kernel, the following vulnerability has been resolved:
tick/nohz: unexport __init-annotated tick_nohz_full_setup()
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it had been broken for a decade.
Commit 28438794aba4 ("modpost: fix section mismatch check for exported
init/exit sections") fixed it so modpost started to warn it again, then
this showed up:
MODPOST vmlinux.symvers
WARNING: modpost: vmlinux.o(___ksymtab_gpl+tick_nohz_full_setup+0x0): Section mismatch in reference from the variable __ksymtab_tick_nohz_full_setup to the function .init.text:tick_nohz_full_setup()
The symbol tick_nohz_full_setup is exported and annotated __init
Fix this by removing the __init annotation of tick_nohz_full_setup or drop the export.
Drop the export because tick_nohz_full_setup() is only called from the
built-in code in kernel/sched/isolation.c. |
| In the Linux kernel, the following vulnerability has been resolved:
afs: Fix dynamic root getattr
The recent patch to make afs_getattr consult the server didn't account
for the pseudo-inodes employed by the dynamic root-type afs superblock
not having a volume or a server to access, and thus an oops occurs if
such a directory is stat'd.
Fix this by checking to see if the vnode->volume pointer actually points
anywhere before following it in afs_getattr().
This can be tested by stat'ing a directory in /afs. It may be
sufficient just to do "ls /afs" and the oops looks something like:
BUG: kernel NULL pointer dereference, address: 0000000000000020
...
RIP: 0010:afs_getattr+0x8b/0x14b
...
Call Trace:
<TASK>
vfs_statx+0x79/0xf5
vfs_fstatat+0x49/0x62 |
| In the Linux kernel, the following vulnerability has been resolved:
erspan: do not assume transport header is always set
Rewrite tests in ip6erspan_tunnel_xmit() and
erspan_fb_xmit() to not assume transport header is set.
syzbot reported:
WARNING: CPU: 0 PID: 1350 at include/linux/skbuff.h:2911 skb_transport_header include/linux/skbuff.h:2911 [inline]
WARNING: CPU: 0 PID: 1350 at include/linux/skbuff.h:2911 ip6erspan_tunnel_xmit+0x15af/0x2eb0 net/ipv6/ip6_gre.c:963
Modules linked in:
CPU: 0 PID: 1350 Comm: aoe_tx0 Not tainted 5.19.0-rc2-syzkaller-00160-g274295c6e53f #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
RIP: 0010:skb_transport_header include/linux/skbuff.h:2911 [inline]
RIP: 0010:ip6erspan_tunnel_xmit+0x15af/0x2eb0 net/ipv6/ip6_gre.c:963
Code: 0f 47 f0 40 88 b5 7f fe ff ff e8 8c 16 4b f9 89 de bf ff ff ff ff e8 a0 12 4b f9 66 83 fb ff 0f 85 1d f1 ff ff e8 71 16 4b f9 <0f> 0b e9 43 f0 ff ff e8 65 16 4b f9 48 8d 85 30 ff ff ff ba 60 00
RSP: 0018:ffffc90005daf910 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 000000000000ffff RCX: 0000000000000000
RDX: ffff88801f032100 RSI: ffffffff882e8d3f RDI: 0000000000000003
RBP: ffffc90005dafab8 R08: 0000000000000003 R09: 000000000000ffff
R10: 000000000000ffff R11: 0000000000000000 R12: ffff888024f21d40
R13: 000000000000a288 R14: 00000000000000b0 R15: ffff888025a2e000
FS: 0000000000000000(0000) GS:ffff88802c800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b2e425000 CR3: 000000006d099000 CR4: 0000000000152ef0
Call Trace:
<TASK>
__netdev_start_xmit include/linux/netdevice.h:4805 [inline]
netdev_start_xmit include/linux/netdevice.h:4819 [inline]
xmit_one net/core/dev.c:3588 [inline]
dev_hard_start_xmit+0x188/0x880 net/core/dev.c:3604
sch_direct_xmit+0x19f/0xbe0 net/sched/sch_generic.c:342
__dev_xmit_skb net/core/dev.c:3815 [inline]
__dev_queue_xmit+0x14a1/0x3900 net/core/dev.c:4219
dev_queue_xmit include/linux/netdevice.h:2994 [inline]
tx+0x6a/0xc0 drivers/block/aoe/aoenet.c:63
kthread+0x1e7/0x3b0 drivers/block/aoe/aoecmd.c:1229
kthread+0x2e9/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:302
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix request_sock leak in sk lookup helpers
A customer reported a request_socket leak in a Calico cloud environment. We
found that a BPF program was doing a socket lookup with takes a refcnt on
the socket and that it was finding the request_socket but returning the parent
LISTEN socket via sk_to_full_sk() without decrementing the child request socket
1st, resulting in request_sock slab object leak. This patch retains the
existing behaviour of returning full socks to the caller but it also decrements
the child request_socket if one is present before doing so to prevent the leak.
Thanks to Curtis Taylor for all the help in diagnosing and testing this. And
thanks to Antoine Tenart for the reproducer and patch input.
v2 of this patch contains, refactor as per Daniel Borkmann's suggestions to
validate RCU flags on the listen socket so that it balances with bpf_sk_release()
and update comments as per Martin KaFai Lau's suggestion. One small change to
Daniels suggestion, put "sk = sk2" under "if (sk2 != sk)" to avoid an extra
instruction. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: re-fetch conntrack after insertion
In case the conntrack is clashing, insertion can free skb->_nfct and
set skb->_nfct to the already-confirmed entry.
This wasn't found before because the conntrack entry and the extension
space used to free'd after an rcu grace period, plus the race needs
events enabled to trigger. |
| A use after free vulnerability exists in the ALSA PCM package in the Linux Kernel. SNDRV_CTL_IOCTL_ELEM_{READ|WRITE}32 is missing locks that can be used in a use-after-free that can result in a priviledge escalation to gain ring0 access from the system user. We recommend upgrading past commit 56b88b50565cd8b946a2d00b0c83927b7ebb055e |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/memhotplug: Add add_pages override for PPC
With commit ffa0b64e3be5 ("powerpc: Fix virt_addr_valid() for 64-bit Book3E & 32-bit")
the kernel now validate the addr against high_memory value. This results
in the below BUG_ON with dax pfns.
[ 635.798741][T26531] kernel BUG at mm/page_alloc.c:5521!
1:mon> e
cpu 0x1: Vector: 700 (Program Check) at [c000000007287630]
pc: c00000000055ed48: free_pages.part.0+0x48/0x110
lr: c00000000053ca70: tlb_finish_mmu+0x80/0xd0
sp: c0000000072878d0
msr: 800000000282b033
current = 0xc00000000afabe00
paca = 0xc00000037ffff300 irqmask: 0x03 irq_happened: 0x05
pid = 26531, comm = 50-landscape-sy
kernel BUG at :5521!
Linux version 5.19.0-rc3-14659-g4ec05be7c2e1 (kvaneesh@ltc-boston8) (gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0, GNU ld (GNU Binutils for Ubuntu) 2.34) #625 SMP Thu Jun 23 00:35:43 CDT 2022
1:mon> t
[link register ] c00000000053ca70 tlb_finish_mmu+0x80/0xd0
[c0000000072878d0] c00000000053ca54 tlb_finish_mmu+0x64/0xd0 (unreliable)
[c000000007287900] c000000000539424 exit_mmap+0xe4/0x2a0
[c0000000072879e0] c00000000019fc1c mmput+0xcc/0x210
[c000000007287a20] c000000000629230 begin_new_exec+0x5e0/0xf40
[c000000007287ae0] c00000000070b3cc load_elf_binary+0x3ac/0x1e00
[c000000007287c10] c000000000627af0 bprm_execve+0x3b0/0xaf0
[c000000007287cd0] c000000000628414 do_execveat_common.isra.0+0x1e4/0x310
[c000000007287d80] c00000000062858c sys_execve+0x4c/0x60
[c000000007287db0] c00000000002c1b0 system_call_exception+0x160/0x2c0
[c000000007287e10] c00000000000c53c system_call_common+0xec/0x250
The fix is to make sure we update high_memory on memory hotplug.
This is similar to what x86 does in commit 3072e413e305 ("mm/memory_hotplug: introduce add_pages") |
| In unix_scm_to_skb of af_unix.c, there is a possible use after free bug due to a race condition. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-196926917References: Upstream kernel |
| In the Linux kernel, the following vulnerability has been resolved:
fscache: Fix invalidation/lookup race
If an NFS file is opened for writing and closed, fscache_invalidate() will
be asked to invalidate the file - however, if the cookie is in the
LOOKING_UP state (or the CREATING state), then request to invalidate
doesn't get recorded for fscache_cookie_state_machine() to do something
with.
Fix this by making __fscache_invalidate() set a flag if it sees the cookie
is in the LOOKING_UP state to indicate that we need to go to invalidation.
Note that this requires a count on the n_accesses counter for the state
machine, which that will release when it's done.
fscache_cookie_state_machine() then shifts to the INVALIDATING state if it
sees the flag.
Without this, an nfs file can get corrupted if it gets modified locally and
then read locally as the cache contents may not get updated. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix queue selection for mesh/OCB interfaces
When using iTXQ, the code assumes that there is only one vif queue for
broadcast packets, using the BE queue. Allowing non-BE queue marking
violates that assumption and txq->ac == skb_queue_mapping is no longer
guaranteed. This can cause issues with queue handling in the driver and
also causes issues with the recent ATF change, resulting in an AQL
underflow warning. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: dwc-qos: Disable split header for Tegra194
There is a long-standing issue with the Synopsys DWC Ethernet driver
for Tegra194 where random system crashes have been observed [0]. The
problem occurs when the split header feature is enabled in the stmmac
driver. In the bad case, a larger than expected buffer length is
received and causes the calculation of the total buffer length to
overflow. This results in a very large buffer length that causes the
kernel to crash. Why this larger buffer length is received is not clear,
however, the feedback from the NVIDIA design team is that the split
header feature is not supported for Tegra194. Therefore, disable split
header support for Tegra194 to prevent these random crashes from
occurring.
[0] https://lore.kernel.org/linux-tegra/b0b17697-f23e-8fa5-3757-604a86f3a095@nvidia.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
sfc: fix kernel panic when creating VF
When creating VFs a kernel panic can happen when calling to
efx_ef10_try_update_nic_stats_vf.
When releasing a DMA coherent buffer, sometimes, I don't know in what
specific circumstances, it has to unmap memory with vunmap. It is
disallowed to do that in IRQ context or with BH disabled. Otherwise, we
hit this line in vunmap, causing the crash:
BUG_ON(in_interrupt());
This patch reenables BH to release the buffer.
Log messages when the bug is hit:
kernel BUG at mm/vmalloc.c:2727!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 6 PID: 1462 Comm: NetworkManager Kdump: loaded Tainted: G I --------- --- 5.14.0-119.el9.x86_64 #1
Hardware name: Dell Inc. PowerEdge R740/06WXJT, BIOS 2.8.2 08/27/2020
RIP: 0010:vunmap+0x2e/0x30
...skip...
Call Trace:
__iommu_dma_free+0x96/0x100
efx_nic_free_buffer+0x2b/0x40 [sfc]
efx_ef10_try_update_nic_stats_vf+0x14a/0x1c0 [sfc]
efx_ef10_update_stats_vf+0x18/0x40 [sfc]
efx_start_all+0x15e/0x1d0 [sfc]
efx_net_open+0x5a/0xe0 [sfc]
__dev_open+0xe7/0x1a0
__dev_change_flags+0x1d7/0x240
dev_change_flags+0x21/0x60
...skip... |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: rt7*-sdw: harden jack_detect_handler
Realtek headset codec drivers typically check if the card is
instantiated before proceeding with the jack detection.
The rt700, rt711 and rt711-sdca are however missing a check on the
card pointer, which can lead to NULL dereferences encountered in
driver bind/unbind tests. |
| In the Linux kernel, the following vulnerability has been resolved:
power: supply: core: Fix boundary conditions in interpolation
The functions power_supply_temp2resist_simple and power_supply_ocv2cap_simple
handle boundary conditions incorrectly.
The change was introduced in a4585ba2050f460f749bbaf2b67bd56c41e30283
("power: supply: core: Use library interpolation").
There are two issues: First, the lines "high = i - 1" and "high = i" in ocv2cap
have the wrong order compared to temp2resist. As a consequence, ocv2cap
sets high=-1 if ocv>table[0].ocv, which causes an out-of-bounds read.
Second, the logic of temp2resist is also not correct.
Consider the case table[] = {{20, 100}, {10, 80}, {0, 60}}.
For temp=5, we expect a resistance of 70% by interpolation.
However, temp2resist sets high=low=2 and returns 60. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/speculation: Fill RSB on vmexit for IBRS
Prevent RSB underflow/poisoning attacks with RSB. While at it, add a
bunch of comments to attempt to document the current state of tribal
knowledge about RSB attacks and what exactly is being mitigated. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Fix sleep from invalid context BUG
Taking the qos_mutex to process RoCEv2 QP's on netdev events causes a
kernel splat.
Fix this by removing the handling for RoCEv2 in
irdma_cm_teardown_connections that uses the mutex. This handling is only
needed for iWARP to avoid having connections established while the link is
down or having connections remain functional after the IP address is
removed.
BUG: sleeping function called from invalid context at kernel/locking/mutex.
Call Trace:
kernel: dump_stack+0x66/0x90
kernel: ___might_sleep.cold.92+0x8d/0x9a
kernel: mutex_lock+0x1c/0x40
kernel: irdma_cm_teardown_connections+0x28e/0x4d0 [irdma]
kernel: ? check_preempt_curr+0x7a/0x90
kernel: ? select_idle_sibling+0x22/0x3c0
kernel: ? select_task_rq_fair+0x94c/0xc90
kernel: ? irdma_exec_cqp_cmd+0xc27/0x17c0 [irdma]
kernel: ? __wake_up_common+0x7a/0x190
kernel: irdma_if_notify+0x3cc/0x450 [irdma]
kernel: ? sched_clock_cpu+0xc/0xb0
kernel: irdma_inet6addr_event+0xc6/0x150 [irdma] |