| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix ECMP sibling count mismatch when clearing RTF_ADDRCONF
syzbot reported a kernel BUG in fib6_add_rt2node() when adding an IPv6
route. [0]
Commit f72514b3c569 ("ipv6: clear RA flags when adding a static
route") introduced logic to clear RTF_ADDRCONF from existing routes
when a static route with the same nexthop is added. However, this
causes a problem when the existing route has a gateway.
When RTF_ADDRCONF is cleared from a route that has a gateway, that
route becomes eligible for ECMP, i.e. rt6_qualify_for_ecmp() returns
true. The issue is that this route was never added to the
fib6_siblings list.
This leads to a mismatch between the following counts:
- The sibling count computed by iterating fib6_next chain, which
includes the newly ECMP-eligible route
- The actual siblings in fib6_siblings list, which does not include
that route
When a subsequent ECMP route is added, fib6_add_rt2node() hits
BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings) because the
counts don't match.
Fix this by only clearing RTF_ADDRCONF when the existing route does
not have a gateway. Routes without a gateway cannot qualify for ECMP
anyway (rt6_qualify_for_ecmp() requires fib_nh_gw_family), so clearing
RTF_ADDRCONF on them is safe and matches the original intent of the
commit.
[0]:
kernel BUG at net/ipv6/ip6_fib.c:1217!
Oops: invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 6010 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
RIP: 0010:fib6_add_rt2node+0x3433/0x3470 net/ipv6/ip6_fib.c:1217
[...]
Call Trace:
<TASK>
fib6_add+0x8da/0x18a0 net/ipv6/ip6_fib.c:1532
__ip6_ins_rt net/ipv6/route.c:1351 [inline]
ip6_route_add+0xde/0x1b0 net/ipv6/route.c:3946
ipv6_route_ioctl+0x35c/0x480 net/ipv6/route.c:4571
inet6_ioctl+0x219/0x280 net/ipv6/af_inet6.c:577
sock_do_ioctl+0xdc/0x300 net/socket.c:1245
sock_ioctl+0x576/0x790 net/socket.c:1366
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| Glory RBG-100 recycler systems using the ISPK-08 software component contain multiple system binaries with overly permissive file permissions. Several binaries executed by the root user are writable and executable by unprivileged local users. An attacker with local access can replace or modify these binaries to execute arbitrary commands with root privileges, enabling local privilege escalation. |
| Dell Unisphere for PowerMax vApp, version(s) 9.2.4.x, contain(s) an Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability. A low privileged attacker with remote access could potentially exploit this vulnerability, leading to the execution of malicious HTML or JavaScript code in a victim user's web browser in the context of the vulnerable web application. Exploitation may lead to information disclosure, session theft, or client-side request forgery. |
| A vulnerability has been found in Free5GC up to 4.1.0. This affects an unknown function of the component PFCP UDP Endpoint. Such manipulation leads to denial of service. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. |
| The Micca KE700 system contains flawed resynchronization logic and is vulnerable to replay attacks. This attack requires sending two previously captured codes in a specific sequence. As a result, the system can be forced to accept previously used (stale) rolling codes and execute a command. Successful exploitation allows an attacker to clone the alarm key. This grants the attacker unauthorized access to the vehicle to unlock or lock the doors. |
| The Micca KE700 system relies on a 6-bit portion of an identifier for authentication within rolling codes, providing only 64 possible combinations. This low entropy allows an attacker to perform a brute-force attack against one component of the rolling code. Successful exploitation simplify an attacker to predict the next valid rolling code, granting unauthorized access to the vehicle. |
| Smoothwall Express 3.1-SP4-polar-x86_64-update9 contains a reflected cross-site scripting vulnerability that allows unauthenticated attackers to inject malicious scripts by submitting crafted input to the xtaccess.cgi endpoint. Attackers can inject script payloads through the EXT, DEST_PORT, or COMMENT parameters via POST requests to execute arbitrary JavaScript in victim browsers. |
| Smoothwall Express 3.1-SP4-polar-x86_64-update9 contains a reflected cross-site scripting vulnerability that allows unauthenticated attackers to inject malicious scripts by submitting crafted input to the ipblock.cgi endpoint. Attackers can inject script tags through the SRC_IP and COMMENT parameters in POST requests to execute arbitrary JavaScript in users' browsers. |
| Smoothwall Express 3.1-SP4-polar-x86_64-update9 contains a reflected cross-site scripting vulnerability that allows unauthenticated attackers to inject malicious scripts by exploiting insufficient input validation. Attackers can submit POST requests to the smoothinfo.cgi endpoint with script payloads in the WRAP or SECTIONTITLE parameters to execute arbitrary JavaScript in victim browsers. |
| LightLLM version 1.1.0 and prior contain an unauthenticated remote code execution vulnerability in PD (prefill-decode) disaggregation mode. The PD master node exposes WebSocket endpoints that receive binary frames and pass the data directly to pickle.loads() without authentication or validation. A remote attacker who can reach the PD master can send a crafted payload to achieve arbitrary code execution. |
| eNet SMART HOME server 2.2.1 and 2.3.1 ships with default credentials (user:user, admin:admin) that remain active after installation and commissioning without enforcing a mandatory password change. Unauthenticated attackers can use these default credentials to gain administrative access to sensitive smart home configuration and control functions. |
| eNet SMART HOME server 2.2.1 and 2.3.1 contains a privilege escalation vulnerability due to insufficient authorization checks in the setUserGroup JSON-RPC method. A low-privileged user (UG_USER) can send a crafted POST request to /jsonrpc/management specifying their own username to elevate their account to the UG_ADMIN group, bypassing intended access controls and gaining administrative capabilities such as modifying device configurations, network settings, and other smart home system functions. |
| An issue in Visual Studio Code Extensions Markdown Preview Enhanced v0.8.18 allows attackers to execute arbitrary code via uploading a crafted .Md file. |
| An issue in Datart v1.0.0-rc.3 allows attackers to execute arbitrary code via the url parameter in the JDBC configuration |
| An information exposure vulnerability in Datart v1.0.0-rc.3 allows authenticated attackers to access sensitive data via a custom H2 JDBC connection string. |
| An issue in the TLS certification mechanism of Guardian Gryphon v01.06.0006.22 allows attackers to execute commands as root. |
| Smoothwall Express 3.1-SP4-polar-x86_64-update9 contains multiple reflected cross-site scripting vulnerabilities in the hosts.cgi script that allow attackers to inject malicious scripts through unvalidated parameters. Attackers can submit POST requests to the hosts.cgi endpoint with script payloads in the IP, HOSTNAME, or COMMENT parameters to execute arbitrary JavaScript in users' browsers. |
| Smoothwall Express 3.1-SP4-polar-x86_64-update9 contains a reflected cross-site scripting vulnerability that allows unauthenticated attackers to inject malicious scripts by manipulating the NTP_SERVER parameter. Attackers can send POST requests to the time.cgi endpoint with script payloads in the NTP_SERVER parameter to execute arbitrary JavaScript in users' browsers. |
| Mattermost Desktop App versions <=6.0 6.2.0 5.2.13.0 fail to validate help links which allows a malicious Mattermost server to execute arbitrary executables on a user’s system via the user clicking on certain items in the Help menu Mattermost Advisory ID: MMSA-2026-00577 |
| There is a misconfiguration vulnerability inside the Infotainment ECU manufactured by BOSCH. The vulnerability happens during the startup phase of a specific systemd service, and as a result, the following developer features will be activated: the disabled firewall and the launched SSH server.
First identified on Nissan Leaf ZE1 manufactured in 2020. |