CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ext4: make sure the first directory block is not a hole
The syzbot constructs a directory that has no dirblock but is non-inline,
i.e. the first directory block is a hole. And no errors are reported when
creating files in this directory in the following flow.
ext4_mknod
...
ext4_add_entry
// Read block 0
ext4_read_dirblock(dir, block, DIRENT)
bh = ext4_bread(NULL, inode, block, 0)
if (!bh && (type == INDEX || type == DIRENT_HTREE))
// The first directory block is a hole
// But type == DIRENT, so no error is reported.
After that, we get a directory block without '.' and '..' but with a valid
dentry. This may cause some code that relies on dot or dotdot (such as
make_indexed_dir()) to crash.
Therefore when ext4_read_dirblock() finds that the first directory block
is a hole report that the filesystem is corrupted and return an error to
avoid loading corrupted data from disk causing something bad. |
In the Linux kernel, the following vulnerability has been resolved:
udf: Avoid using corrupted block bitmap buffer
When the filesystem block bitmap is corrupted, we detect the corruption
while loading the bitmap and fail the allocation with error. However the
next allocation from the same bitmap will notice the bitmap buffer is
already loaded and tries to allocate from the bitmap with mixed results
(depending on the exact nature of the bitmap corruption). Fix the
problem by using BH_verified bit to indicate whether the bitmap is valid
or not. |
In the Linux kernel, the following vulnerability has been resolved:
sysctl: always initialize i_uid/i_gid
Always initialize i_uid/i_gid inside the sysfs core so set_ownership()
can safely skip setting them.
Commit 5ec27ec735ba ("fs/proc/proc_sysctl.c: fix the default values of
i_uid/i_gid on /proc/sys inodes.") added defaults for i_uid/i_gid when
set_ownership() was not implemented. It also missed adjusting
net_ctl_set_ownership() to use the same default values in case the
computation of a better value failed. |
In the Linux kernel, the following vulnerability has been resolved:
mm/huge_memory: avoid PMD-size page cache if needed
xarray can't support arbitrary page cache size. the largest and supported
page cache size is defined as MAX_PAGECACHE_ORDER by commit 099d90642a71
("mm/filemap: make MAX_PAGECACHE_ORDER acceptable to xarray"). However,
it's possible to have 512MB page cache in the huge memory's collapsing
path on ARM64 system whose base page size is 64KB. 512MB page cache is
breaking the limitation and a warning is raised when the xarray entry is
split as shown in the following example.
[root@dhcp-10-26-1-207 ~]# cat /proc/1/smaps | grep KernelPageSize
KernelPageSize: 64 kB
[root@dhcp-10-26-1-207 ~]# cat /tmp/test.c
:
int main(int argc, char **argv)
{
const char *filename = TEST_XFS_FILENAME;
int fd = 0;
void *buf = (void *)-1, *p;
int pgsize = getpagesize();
int ret = 0;
if (pgsize != 0x10000) {
fprintf(stdout, "System with 64KB base page size is required!\n");
return -EPERM;
}
system("echo 0 > /sys/devices/virtual/bdi/253:0/read_ahead_kb");
system("echo 1 > /proc/sys/vm/drop_caches");
/* Open the xfs file */
fd = open(filename, O_RDONLY);
assert(fd > 0);
/* Create VMA */
buf = mmap(NULL, TEST_MEM_SIZE, PROT_READ, MAP_SHARED, fd, 0);
assert(buf != (void *)-1);
fprintf(stdout, "mapped buffer at 0x%p\n", buf);
/* Populate VMA */
ret = madvise(buf, TEST_MEM_SIZE, MADV_NOHUGEPAGE);
assert(ret == 0);
ret = madvise(buf, TEST_MEM_SIZE, MADV_POPULATE_READ);
assert(ret == 0);
/* Collapse VMA */
ret = madvise(buf, TEST_MEM_SIZE, MADV_HUGEPAGE);
assert(ret == 0);
ret = madvise(buf, TEST_MEM_SIZE, MADV_COLLAPSE);
if (ret) {
fprintf(stdout, "Error %d to madvise(MADV_COLLAPSE)\n", errno);
goto out;
}
/* Split xarray entry. Write permission is needed */
munmap(buf, TEST_MEM_SIZE);
buf = (void *)-1;
close(fd);
fd = open(filename, O_RDWR);
assert(fd > 0);
fallocate(fd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE,
TEST_MEM_SIZE - pgsize, pgsize);
out:
if (buf != (void *)-1)
munmap(buf, TEST_MEM_SIZE);
if (fd > 0)
close(fd);
return ret;
}
[root@dhcp-10-26-1-207 ~]# gcc /tmp/test.c -o /tmp/test
[root@dhcp-10-26-1-207 ~]# /tmp/test
------------[ cut here ]------------
WARNING: CPU: 25 PID: 7560 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128
Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \
nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \
nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \
ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm fuse \
xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 virtio_net \
sha1_ce net_failover virtio_blk virtio_console failover dimlib virtio_mmio
CPU: 25 PID: 7560 Comm: test Kdump: loaded Not tainted 6.10.0-rc7-gavin+ #9
Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024
pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : xas_split_alloc+0xf8/0x128
lr : split_huge_page_to_list_to_order+0x1c4/0x780
sp : ffff8000ac32f660
x29: ffff8000ac32f660 x28: ffff0000e0969eb0 x27: ffff8000ac32f6c0
x26: 0000000000000c40 x25: ffff0000e0969eb0 x24: 000000000000000d
x23: ffff8000ac32f6c0 x22: ffffffdfc0700000 x21: 0000000000000000
x20: 0000000000000000 x19: ffffffdfc0700000 x18: 0000000000000000
x17: 0000000000000000 x16: ffffd5f3708ffc70 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: ffffffffffffffc0 x10: 0000000000000040 x9 : ffffd5f3708e692c
x8 : 0000000000000003 x7 : 0000000000000000 x6 : ffff0000e0969eb8
x5 : ffffd5f37289e378 x4 : 0000000000000000 x3 : 0000000000000c40
x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000
Call trace:
xas_split_alloc+0xf8/0x128
split_huge_page_to_list_to_order+0x1c4/0x780
truncate_inode_partial_folio+0xdc/0x160
truncate_inode_pages_range+0x1b4/0x4a8
truncate_pagecache_range+0x84/0xa
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
landlock: Don't lose track of restrictions on cred_transfer
When a process' cred struct is replaced, this _almost_ always invokes
the cred_prepare LSM hook; but in one special case (when
KEYCTL_SESSION_TO_PARENT updates the parent's credentials), the
cred_transfer LSM hook is used instead. Landlock only implements the
cred_prepare hook, not cred_transfer, so KEYCTL_SESSION_TO_PARENT causes
all information on Landlock restrictions to be lost.
This basically means that a process with the ability to use the fork()
and keyctl() syscalls can get rid of all Landlock restrictions on
itself.
Fix it by adding a cred_transfer hook that does the same thing as the
existing cred_prepare hook. (Implemented by having hook_cred_prepare()
call hook_cred_transfer() so that the two functions are less likely to
accidentally diverge in the future.) |
In the Linux kernel, the following vulnerability has been resolved:
mailbox: mtk-cmdq: Move devm_mbox_controller_register() after devm_pm_runtime_enable()
When mtk-cmdq unbinds, a WARN_ON message with condition
pm_runtime_get_sync() < 0 occurs.
According to the call tracei below:
cmdq_mbox_shutdown
mbox_free_channel
mbox_controller_unregister
__devm_mbox_controller_unregister
...
The root cause can be deduced to be calling pm_runtime_get_sync() after
calling pm_runtime_disable() as observed below:
1. CMDQ driver uses devm_mbox_controller_register() in cmdq_probe()
to bind the cmdq device to the mbox_controller, so
devm_mbox_controller_unregister() will automatically unregister
the device bound to the mailbox controller when the device-managed
resource is removed. That means devm_mbox_controller_unregister()
and cmdq_mbox_shoutdown() will be called after cmdq_remove().
2. CMDQ driver also uses devm_pm_runtime_enable() in cmdq_probe() after
devm_mbox_controller_register(), so that devm_pm_runtime_disable()
will be called after cmdq_remove(), but before
devm_mbox_controller_unregister().
To fix this problem, cmdq_probe() needs to move
devm_mbox_controller_register() after devm_pm_runtime_enable() to make
devm_pm_runtime_disable() be called after
devm_mbox_controller_unregister(). |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_inner: incorrect percpu area handling under softirq
Softirq can interrupt ongoing packet from process context that is
walking over the percpu area that contains inner header offsets.
Disable bh and perform three checks before restoring the percpu inner
header offsets to validate that the percpu area is valid for this
skbuff:
1) If the NFT_PKTINFO_INNER_FULL flag is set on, then this skbuff
has already been parsed before for inner header fetching to
register.
2) Validate that the percpu area refers to this skbuff using the
skbuff pointer as a cookie. If there is a cookie mismatch, then
this skbuff needs to be parsed again.
3) Finally, validate if the percpu area refers to this tunnel type.
Only after these three checks the percpu area is restored to a on-stack
copy and bh is enabled again.
After inner header fetching, the on-stack copy is stored back to the
percpu area. |
CVE-2025-54088 is an open-redirect vulnerability in Secure
Access prior to version 14.10. Attackers with access to the console can
redirect victims to an arbitrary URL. The attack complexity is low, attack
requirements are present, no privileges are required, and users must actively
participate in the attack. Impact to confidentiality is low and there is no
impact to integrity or availability. There are high severity impacts to
confidentiality, integrity, availability in subsequent systems. |
CVE-2025-54087 is a server-side request forgery
vulnerability in Secure Access prior to version 14.10. Attackers with
administrative privileges can publish a crafted test HTTP request originating
from the Secure Access server. The attack complexity is high, there are no
attack requirements, and user interaction is required. There is no direct
impact to confidentiality, integrity, or availability. There is a low severity
subsequent system impact to integrity. |
SummerNote v0.9.1 is vulnerable to Cross Site Scripting (XSS) via the Code View Function. |
In the Linux kernel, the following vulnerability has been resolved:
net: hsr: must allocate more bytes for RedBox support
Blamed commit forgot to change hsr_init_skb() to allocate
larger skb for RedBox case.
Indeed, send_hsr_supervision_frame() will add
two additional components (struct hsr_sup_tlv
and struct hsr_sup_payload)
syzbot reported the following crash:
skbuff: skb_over_panic: text:ffffffff8afd4b0a len:34 put:6 head:ffff88802ad29e00 data:ffff88802ad29f22 tail:0x144 end:0x140 dev:gretap0
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:206 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 2 UID: 0 PID: 7611 Comm: syz-executor Not tainted 6.12.0-syzkaller #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:skb_panic+0x157/0x1d0 net/core/skbuff.c:206
Code: b6 04 01 84 c0 74 04 3c 03 7e 21 8b 4b 70 41 56 45 89 e8 48 c7 c7 a0 7d 9b 8c 41 57 56 48 89 ee 52 4c 89 e2 e8 9a 76 79 f8 90 <0f> 0b 4c 89 4c 24 10 48 89 54 24 08 48 89 34 24 e8 94 76 fb f8 4c
RSP: 0018:ffffc90000858ab8 EFLAGS: 00010282
RAX: 0000000000000087 RBX: ffff8880598c08c0 RCX: ffffffff816d3e69
RDX: 0000000000000000 RSI: ffffffff816de786 RDI: 0000000000000005
RBP: ffffffff8c9b91c0 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000000000302 R11: ffffffff961cc1d0 R12: ffffffff8afd4b0a
R13: 0000000000000006 R14: ffff88804b938130 R15: 0000000000000140
FS: 000055558a3d6500(0000) GS:ffff88806a800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1295974ff8 CR3: 000000002ab6e000 CR4: 0000000000352ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<IRQ>
skb_over_panic net/core/skbuff.c:211 [inline]
skb_put+0x174/0x1b0 net/core/skbuff.c:2617
send_hsr_supervision_frame+0x6fa/0x9e0 net/hsr/hsr_device.c:342
hsr_proxy_announce+0x1a3/0x4a0 net/hsr/hsr_device.c:436
call_timer_fn+0x1a0/0x610 kernel/time/timer.c:1794
expire_timers kernel/time/timer.c:1845 [inline]
__run_timers+0x6e8/0x930 kernel/time/timer.c:2419
__run_timer_base kernel/time/timer.c:2430 [inline]
__run_timer_base kernel/time/timer.c:2423 [inline]
run_timer_base+0x111/0x190 kernel/time/timer.c:2439
run_timer_softirq+0x1a/0x40 kernel/time/timer.c:2449
handle_softirqs+0x213/0x8f0 kernel/softirq.c:554
__do_softirq kernel/softirq.c:588 [inline]
invoke_softirq kernel/softirq.c:428 [inline]
__irq_exit_rcu kernel/softirq.c:637 [inline]
irq_exit_rcu+0xbb/0x120 kernel/softirq.c:649
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline]
sysvec_apic_timer_interrupt+0xa4/0xc0 arch/x86/kernel/apic/apic.c:1049
</IRQ> |
In the Linux kernel, the following vulnerability has been resolved:
tracing: Build event generation tests only as modules
The kprobes and synth event generation test modules add events and lock
(get a reference) those event file reference in module init function,
and unlock and delete it in module exit function. This is because those
are designed for playing as modules.
If we make those modules as built-in, those events are left locked in the
kernel, and never be removed. This causes kprobe event self-test failure
as below.
[ 97.349708] ------------[ cut here ]------------
[ 97.353453] WARNING: CPU: 3 PID: 1 at kernel/trace/trace_kprobe.c:2133 kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.357106] Modules linked in:
[ 97.358488] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 6.9.0-g699646734ab5-dirty #14
[ 97.361556] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 97.363880] RIP: 0010:kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.365538] Code: a8 24 08 82 e9 ae fd ff ff 90 0f 0b 90 48 c7 c7 e5 aa 0b 82 e9 ee fc ff ff 90 0f 0b 90 48 c7 c7 2d 61 06 82 e9 8e fd ff ff 90 <0f> 0b 90 48 c7 c7 33 0b 0c 82 89 c6 e8 6e 03 1f ff 41 ff c7 e9 90
[ 97.370429] RSP: 0000:ffffc90000013b50 EFLAGS: 00010286
[ 97.371852] RAX: 00000000fffffff0 RBX: ffff888005919c00 RCX: 0000000000000000
[ 97.373829] RDX: ffff888003f40000 RSI: ffffffff8236a598 RDI: ffff888003f40a68
[ 97.375715] RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
[ 97.377675] R10: ffffffff811c9ae5 R11: ffffffff8120c4e0 R12: 0000000000000000
[ 97.379591] R13: 0000000000000001 R14: 0000000000000015 R15: 0000000000000000
[ 97.381536] FS: 0000000000000000(0000) GS:ffff88807dcc0000(0000) knlGS:0000000000000000
[ 97.383813] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 97.385449] CR2: 0000000000000000 CR3: 0000000002244000 CR4: 00000000000006b0
[ 97.387347] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 97.389277] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 97.391196] Call Trace:
[ 97.391967] <TASK>
[ 97.392647] ? __warn+0xcc/0x180
[ 97.393640] ? kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.395181] ? report_bug+0xbd/0x150
[ 97.396234] ? handle_bug+0x3e/0x60
[ 97.397311] ? exc_invalid_op+0x1a/0x50
[ 97.398434] ? asm_exc_invalid_op+0x1a/0x20
[ 97.399652] ? trace_kprobe_is_busy+0x20/0x20
[ 97.400904] ? tracing_reset_all_online_cpus+0x15/0x90
[ 97.402304] ? kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.403773] ? init_kprobe_trace+0x50/0x50
[ 97.404972] do_one_initcall+0x112/0x240
[ 97.406113] do_initcall_level+0x95/0xb0
[ 97.407286] ? kernel_init+0x1a/0x1a0
[ 97.408401] do_initcalls+0x3f/0x70
[ 97.409452] kernel_init_freeable+0x16f/0x1e0
[ 97.410662] ? rest_init+0x1f0/0x1f0
[ 97.411738] kernel_init+0x1a/0x1a0
[ 97.412788] ret_from_fork+0x39/0x50
[ 97.413817] ? rest_init+0x1f0/0x1f0
[ 97.414844] ret_from_fork_asm+0x11/0x20
[ 97.416285] </TASK>
[ 97.417134] irq event stamp: 13437323
[ 97.418376] hardirqs last enabled at (13437337): [<ffffffff8110bc0c>] console_unlock+0x11c/0x150
[ 97.421285] hardirqs last disabled at (13437370): [<ffffffff8110bbf1>] console_unlock+0x101/0x150
[ 97.423838] softirqs last enabled at (13437366): [<ffffffff8108e17f>] handle_softirqs+0x23f/0x2a0
[ 97.426450] softirqs last disabled at (13437393): [<ffffffff8108e346>] __irq_exit_rcu+0x66/0xd0
[ 97.428850] ---[ end trace 0000000000000000 ]---
And also, since we can not cleanup dynamic_event file, ftracetest are
failed too.
To avoid these issues, build these tests only as modules. |
In the Linux kernel, the following vulnerability has been resolved:
crypto: bcm - add error check in the ahash_hmac_init function
The ahash_init functions may return fails. The ahash_hmac_init should
not return ok when ahash_init returns error. For an example, ahash_init
will return -ENOMEM when allocation memory is error. |
In the Linux kernel, the following vulnerability has been resolved:
net: ena: Add validation for completion descriptors consistency
Validate that `first` flag is set only for the first
descriptor in multi-buffer packets.
In case of an invalid descriptor, a reset will occur.
A new reset reason for RX data corruption has been added. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix responder length checking for UD request packets
According to the IBA specification:
If a UD request packet is detected with an invalid length, the request
shall be an invalid request and it shall be silently dropped by
the responder. The responder then waits for a new request packet.
commit 689c5421bfe0 ("RDMA/rxe: Fix incorrect responder length checking")
defers responder length check for UD QPs in function `copy_data`.
But it introduces a regression issue for UD QPs.
When the packet size is too large to fit in the receive buffer.
`copy_data` will return error code -EINVAL. Then `send_data_in`
will return RESPST_ERR_MALFORMED_WQE. UD QP will transfer into
ERROR state. |
In the Linux kernel, the following vulnerability has been resolved:
drm/vc4: hdmi: Avoid hang with debug registers when suspended
Trying to read /sys/kernel/debug/dri/1/hdmi1_regs
when the hdmi is disconnected results in a fatal system hang.
This is due to the pm suspend code disabling the dvp clock.
That is just a gate of the 108MHz clock in DVP_HT_RPI_MISC_CONFIG,
which results in accesses hanging AXI bus.
Protect against this. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: skip reserved bytes warning on unmount after log cleanup failure
After the recent changes made by commit c2e39305299f01 ("btrfs: clear
extent buffer uptodate when we fail to write it") and its followup fix,
commit 651740a5024117 ("btrfs: check WRITE_ERR when trying to read an
extent buffer"), we can now end up not cleaning up space reservations of
log tree extent buffers after a transaction abort happens, as well as not
cleaning up still dirty extent buffers.
This happens because if writeback for a log tree extent buffer failed,
then we have cleared the bit EXTENT_BUFFER_UPTODATE from the extent buffer
and we have also set the bit EXTENT_BUFFER_WRITE_ERR on it. Later on,
when trying to free the log tree with free_log_tree(), which iterates
over the tree, we can end up getting an -EIO error when trying to read
a node or a leaf, since read_extent_buffer_pages() returns -EIO if an
extent buffer does not have EXTENT_BUFFER_UPTODATE set and has the
EXTENT_BUFFER_WRITE_ERR bit set. Getting that -EIO means that we return
immediately as we can not iterate over the entire tree.
In that case we never update the reserved space for an extent buffer in
the respective block group and space_info object.
When this happens we get the following traces when unmounting the fs:
[174957.284509] BTRFS: error (device dm-0) in cleanup_transaction:1913: errno=-5 IO failure
[174957.286497] BTRFS: error (device dm-0) in free_log_tree:3420: errno=-5 IO failure
[174957.399379] ------------[ cut here ]------------
[174957.402497] WARNING: CPU: 2 PID: 3206883 at fs/btrfs/block-group.c:127 btrfs_put_block_group+0x77/0xb0 [btrfs]
[174957.407523] Modules linked in: btrfs overlay dm_zero (...)
[174957.424917] CPU: 2 PID: 3206883 Comm: umount Tainted: G W 5.16.0-rc5-btrfs-next-109 #1
[174957.426689] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[174957.428716] RIP: 0010:btrfs_put_block_group+0x77/0xb0 [btrfs]
[174957.429717] Code: 21 48 8b bd (...)
[174957.432867] RSP: 0018:ffffb70d41cffdd0 EFLAGS: 00010206
[174957.433632] RAX: 0000000000000001 RBX: ffff8b09c3848000 RCX: ffff8b0758edd1c8
[174957.434689] RDX: 0000000000000001 RSI: ffffffffc0b467e7 RDI: ffff8b0758edd000
[174957.436068] RBP: ffff8b0758edd000 R08: 0000000000000000 R09: 0000000000000000
[174957.437114] R10: 0000000000000246 R11: 0000000000000000 R12: ffff8b09c3848148
[174957.438140] R13: ffff8b09c3848198 R14: ffff8b0758edd188 R15: dead000000000100
[174957.439317] FS: 00007f328fb82800(0000) GS:ffff8b0a2d200000(0000) knlGS:0000000000000000
[174957.440402] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[174957.441164] CR2: 00007fff13563e98 CR3: 0000000404f4e005 CR4: 0000000000370ee0
[174957.442117] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[174957.443076] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[174957.443948] Call Trace:
[174957.444264] <TASK>
[174957.444538] btrfs_free_block_groups+0x255/0x3c0 [btrfs]
[174957.445238] close_ctree+0x301/0x357 [btrfs]
[174957.445803] ? call_rcu+0x16c/0x290
[174957.446250] generic_shutdown_super+0x74/0x120
[174957.446832] kill_anon_super+0x14/0x30
[174957.447305] btrfs_kill_super+0x12/0x20 [btrfs]
[174957.447890] deactivate_locked_super+0x31/0xa0
[174957.448440] cleanup_mnt+0x147/0x1c0
[174957.448888] task_work_run+0x5c/0xa0
[174957.449336] exit_to_user_mode_prepare+0x1e5/0x1f0
[174957.449934] syscall_exit_to_user_mode+0x16/0x40
[174957.450512] do_syscall_64+0x48/0xc0
[174957.450980] entry_SYSCALL_64_after_hwframe+0x44/0xae
[174957.451605] RIP: 0033:0x7f328fdc4a97
[174957.452059] Code: 03 0c 00 f7 (...)
[174957.454320] RSP: 002b:00007fff13564ec8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[174957.455262] RAX: 0000000000000000 RBX: 00007f328feea264 RCX: 00007f328fdc4a97
[174957.456131] RDX: 0000000000000000 RSI: 00000000000000
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
audit: don't deref the syscall args when checking the openat2 open_how::flags
As reported by Jeff, dereferencing the openat2 syscall argument in
audit_match_perm() to obtain the open_how::flags can result in an
oops/page-fault. This patch fixes this by using the open_how struct
that we store in the audit_context with audit_openat2_how().
Independent of this patch, Richard Guy Briggs posted a similar patch
to the audit mailing list roughly 40 minutes after this patch was
posted. |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Fix NFSv3 SETATTR/CREATE's handling of large file sizes
iattr::ia_size is a loff_t, so these NFSv3 procedures must be
careful to deal with incoming client size values that are larger
than s64_max without corrupting the value.
Silently capping the value results in storing a different value
than the client passed in which is unexpected behavior, so remove
the min_t() check in decode_sattr3().
Note that RFC 1813 permits only the WRITE procedure to return
NFS3ERR_FBIG. We believe that NFSv3 reference implementations
also return NFS3ERR_FBIG when ia_size is too large. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qedf: Add stag_work to all the vports
Call trace seen when creating NPIV ports, only 32 out of 64 show online.
stag work was not initialized for vport, hence initialize the stag work.
WARNING: CPU: 8 PID: 645 at kernel/workqueue.c:1635 __queue_delayed_work+0x68/0x80
CPU: 8 PID: 645 Comm: kworker/8:1 Kdump: loaded Tainted: G IOE --------- --
4.18.0-348.el8.x86_64 #1
Hardware name: Dell Inc. PowerEdge MX740c/0177V9, BIOS 2.12.2 07/09/2021
Workqueue: events fc_lport_timeout [libfc]
RIP: 0010:__queue_delayed_work+0x68/0x80
Code: 89 b2 88 00 00 00 44 89 82 90 00 00 00 48 01 c8 48 89 42 50 41 81
f8 00 20 00 00 75 1d e9 60 24 07 00 44 89 c7 e9 98 f6 ff ff <0f> 0b eb
c5 0f 0b eb a1 0f 0b eb a7 0f 0b eb ac 44 89 c6 e9 40 23
RSP: 0018:ffffae514bc3be40 EFLAGS: 00010006
RAX: ffff8d25d6143750 RBX: 0000000000000202 RCX: 0000000000000002
RDX: ffff8d2e31383748 RSI: ffff8d25c000d600 RDI: ffff8d2e31383788
RBP: ffff8d2e31380de0 R08: 0000000000002000 R09: ffff8d2e31383750
R10: ffffffffc0c957e0 R11: ffff8d2624800000 R12: ffff8d2e31380a58
R13: ffff8d2d915eb000 R14: ffff8d25c499b5c0 R15: ffff8d2e31380e18
FS: 0000000000000000(0000) GS:ffff8d2d1fb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055fd0484b8b8 CR3: 00000008ffc10006 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
queue_delayed_work_on+0x36/0x40
qedf_elsct_send+0x57/0x60 [qedf]
fc_lport_enter_flogi+0x90/0xc0 [libfc]
fc_lport_timeout+0xb7/0x140 [libfc]
process_one_work+0x1a7/0x360
? create_worker+0x1a0/0x1a0
worker_thread+0x30/0x390
? create_worker+0x1a0/0x1a0
kthread+0x116/0x130
? kthread_flush_work_fn+0x10/0x10
ret_from_fork+0x35/0x40
---[ end trace 008f00f722f2c2ff ]--
Initialize stag work for all the vports. |