| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: core: remove unnecessary frame_sz check in bpf_xdp_adjust_tail()
Syzkaller reported the following issue:
=======================================
Too BIG xdp->frame_sz = 131072
WARNING: CPU: 0 PID: 5020 at net/core/filter.c:4121
____bpf_xdp_adjust_tail net/core/filter.c:4121 [inline]
WARNING: CPU: 0 PID: 5020 at net/core/filter.c:4121
bpf_xdp_adjust_tail+0x466/0xa10 net/core/filter.c:4103
...
Call Trace:
<TASK>
bpf_prog_4add87e5301a4105+0x1a/0x1c
__bpf_prog_run include/linux/filter.h:600 [inline]
bpf_prog_run_xdp include/linux/filter.h:775 [inline]
bpf_prog_run_generic_xdp+0x57e/0x11e0 net/core/dev.c:4721
netif_receive_generic_xdp net/core/dev.c:4807 [inline]
do_xdp_generic+0x35c/0x770 net/core/dev.c:4866
tun_get_user+0x2340/0x3ca0 drivers/net/tun.c:1919
tun_chr_write_iter+0xe8/0x210 drivers/net/tun.c:2043
call_write_iter include/linux/fs.h:1871 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x650/0xe40 fs/read_write.c:584
ksys_write+0x12f/0x250 fs/read_write.c:637
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
xdp->frame_sz > PAGE_SIZE check was introduced in commit c8741e2bfe87
("xdp: Allow bpf_xdp_adjust_tail() to grow packet size"). But Jesper
Dangaard Brouer <jbrouer@redhat.com> noted that after introducing the
xdp_init_buff() which all XDP driver use - it's safe to remove this
check. The original intend was to catch cases where XDP drivers have
not been updated to use xdp.frame_sz, but that is not longer a concern
(since xdp_init_buff).
Running the initial syzkaller repro it was discovered that the
contiguous physical memory allocation is used for both xdp paths in
tun_get_user(), e.g. tun_build_skb() and tun_alloc_skb(). It was also
stated by Jesper Dangaard Brouer <jbrouer@redhat.com> that XDP can
work on higher order pages, as long as this is contiguous physical
memory (e.g. a page). |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't free qgroup space unless specified
Boris noticed in his simple quotas testing that he was getting a leak
with Sweet Tea's change to subvol create that stopped doing a
transaction commit. This was just a side effect of that change.
In the delayed inode code we have an optimization that will free extra
reservations if we think we can pack a dir item into an already modified
leaf. Previously this wouldn't be triggered in the subvolume create
case because we'd commit the transaction, it was still possible but
much harder to trigger. It could actually be triggered if we did a
mkdir && subvol create with qgroups enabled.
This occurs because in btrfs_insert_delayed_dir_index(), which gets
called when we're adding the dir item, we do the following:
btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
if we're able to skip reserving space.
The problem here is that trans->block_rsv points at the temporary block
rsv for the subvolume create, which has qgroup reservations in the block
rsv.
This is a problem because btrfs_block_rsv_release() will do the
following:
if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
qgroup_to_release = block_rsv->qgroup_rsv_reserved -
block_rsv->qgroup_rsv_size;
block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
}
The temporary block rsv just has ->qgroup_rsv_reserved set,
->qgroup_rsv_size == 0. The optimization in
btrfs_insert_delayed_dir_index() sets ->qgroup_rsv_reserved = 0. Then
later on when we call btrfs_subvolume_release_metadata() which has
btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
qgroup_to_release is set to 0, and we do not convert the reserved
metadata space.
The problem here is that the block rsv code has been unconditionally
messing with ->qgroup_rsv_reserved, because the main place this is used
is delalloc, and any time we call btrfs_block_rsv_release() we do it
with qgroup_to_release set, and thus do the proper accounting.
The subvolume code is the only other code that uses the qgroup
reservation stuff, but it's intermingled with the above optimization,
and thus was getting its reservation freed out from underneath it and
thus leaking the reserved space.
The solution is to simply not mess with the qgroup reservations if we
don't have qgroup_to_release set. This works with the existing code as
anything that messes with the delalloc reservations always have
qgroup_to_release set. This fixes the leak that Boris was observing. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: mtu3: fix kernel panic at qmu transfer done irq handler
When handle qmu transfer irq, it will unlock @mtu->lock before give back
request, if another thread handle disconnect event at the same time, and
try to disable ep, it may lock @mtu->lock and free qmu ring, then qmu
irq hanlder may get a NULL gpd, avoid the KE by checking gpd's value before
handling it.
e.g.
qmu done irq on cpu0 thread running on cpu1
qmu_done_tx()
handle gpd [0]
mtu3_requ_complete() mtu3_gadget_ep_disable()
unlock @mtu->lock
give back request lock @mtu->lock
mtu3_ep_disable()
mtu3_gpd_ring_free()
unlock @mtu->lock
lock @mtu->lock
get next gpd [1]
[1]: goto [0] to handle next gpd, and next gpd may be NULL. |
| A reflected cross-site scripting (XSS) vulnerability in MyNET up to v26.08 allows attackers to execute arbitrary code in the context of a user's browser via injecting a crafted payload into the parameter HTTP. |
| A vulnerability was determined in itsourcecode Online Frozen Foods Ordering System 1.0. This affects an unknown part of the file /contact_us.php. This manipulation of the argument Name causes sql injection. It is possible to initiate the attack remotely. The exploit has been publicly disclosed and may be utilized. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Echo Call Center Services Trade and Industry Inc. Specto CM allows Stored XSS.This issue affects Specto CM: before 17032025. |
| A remote unauthenticated attacker may be able to bypass authentication
by utilizing a specific API route to execute arbitrary OS commands. |
| IBM Concert 1.0.0 through 2.1.0 stores sensitive information in cleartext during recursive docker builds which could be obtained by a local user. |
| URL Redirection to Untrusted Site ('Open Redirect') vulnerability in Scott Paterson Accept Donations with PayPal easy-paypal-donation allows Phishing.This issue affects Accept Donations with PayPal: from n/a through <= 1.5.1. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Prevent potential UAF in group creation
This commit prevents the possibility of a use after free issue in the
GROUP_CREATE ioctl function, which arose as pointer to the group is
accessed in that ioctl function after storing it in the Xarray.
A malicious userspace can second guess the handle of a group and try
to call GROUP_DESTROY ioctl from another thread around the same time
as GROUP_CREATE ioctl.
To prevent the use after free exploit, this commit uses a mark on an
entry of group pool Xarray which is added just before returning from
the GROUP_CREATE ioctl function. The mark is checked for all ioctls
that specify the group handle and so userspace won't be abe to delete
a group that isn't marked yet.
v2: Add R-bs and fixes tags |
| In the Linux kernel, the following vulnerability has been resolved:
PM / devfreq: hisi: Fix potential UAF in OPP handling
Ensure all required data is acquired before calling dev_pm_opp_put(opp)
to maintain correct resource acquisition and release order. |
| In the Linux kernel, the following vulnerability has been resolved:
ima: Handle error code returned by ima_filter_rule_match()
In ima_match_rules(), if ima_filter_rule_match() returns -ENOENT due to
the rule being NULL, the function incorrectly skips the 'if (!rc)' check
and sets 'result = true'. The LSM rule is considered a match, causing
extra files to be measured by IMA.
This issue can be reproduced in the following scenario:
After unloading the SELinux policy module via 'semodule -d', if an IMA
measurement is triggered before ima_lsm_rules is updated,
in ima_match_rules(), the first call to ima_filter_rule_match() returns
-ESTALE. This causes the code to enter the 'if (rc == -ESTALE &&
!rule_reinitialized)' block, perform ima_lsm_copy_rule() and retry. In
ima_lsm_copy_rule(), since the SELinux module has been removed, the rule
becomes NULL, and the second call to ima_filter_rule_match() returns
-ENOENT. This bypasses the 'if (!rc)' check and results in a false match.
Call trace:
selinux_audit_rule_match+0x310/0x3b8
security_audit_rule_match+0x60/0xa0
ima_match_rules+0x2e4/0x4a0
ima_match_policy+0x9c/0x1e8
ima_get_action+0x48/0x60
process_measurement+0xf8/0xa98
ima_bprm_check+0x98/0xd8
security_bprm_check+0x5c/0x78
search_binary_handler+0x6c/0x318
exec_binprm+0x58/0x1b8
bprm_execve+0xb8/0x130
do_execveat_common.isra.0+0x1a8/0x258
__arm64_sys_execve+0x48/0x68
invoke_syscall+0x50/0x128
el0_svc_common.constprop.0+0xc8/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x44/0x200
el0t_64_sync_handler+0x100/0x130
el0t_64_sync+0x3c8/0x3d0
Fix this by changing 'if (!rc)' to 'if (rc <= 0)' to ensure that error
codes like -ENOENT do not bypass the check and accidentally result in a
successful match. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix improper freeing of purex item
In qla2xxx_process_purls_iocb(), an item is allocated via
qla27xx_copy_multiple_pkt(), which internally calls
qla24xx_alloc_purex_item().
The qla24xx_alloc_purex_item() function may return a pre-allocated item
from a per-adapter pool for small allocations, instead of dynamically
allocating memory with kzalloc().
An error handling path in qla2xxx_process_purls_iocb() incorrectly uses
kfree() to release the item. If the item was from the pre-allocated
pool, calling kfree() on it is a bug that can lead to memory corruption.
Fix this by using the correct deallocation function,
qla24xx_free_purex_item(), which properly handles both dynamically
allocated and pre-allocated items. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Fix timeout handling
When the CPU that the QSPI interrupt handler runs on (typically CPU 0)
is excessively busy, it can lead to rare cases of the IRQ thread not
running before the transfer timeout is reached.
While handling the timeouts, any pending transfers are cleaned up and
the message that they correspond to is marked as failed, which leaves
the curr_xfer field pointing at stale memory.
To avoid this, clear curr_xfer to NULL upon timeout and check for this
condition when the IRQ thread is finally run.
While at it, also make sure to clear interrupts on failure so that new
interrupts can be run.
A better, more involved, fix would move the interrupt clearing into a
hard IRQ handler. Ideally we would also want to signal that the IRQ
thread no longer needs to be run after the timeout is hit to avoid the
extra check for a valid transfer. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix UAF on kernel BO VA nodes
If the MMU is down, panthor_vm_unmap_range() might return an error.
We expect the page table to be updated still, and if the MMU is blocked,
the rest of the GPU should be blocked too, so no risk of accessing
physical memory returned to the system (which the current code doesn't
cover for anyway).
Proceed with the rest of the cleanup instead of bailing out and leaving
the va_node inserted in the drm_mm, which leads to UAF when other
adjacent nodes are removed from the drm_mm tree. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix race condition when unbinding BOs
Fix 'Memory manager not clean during takedown' warning that occurs
when ivpu_gem_bo_free() removes the BO from the BOs list before it
gets unmapped. Then file_priv_unbind() triggers a warning in
drm_mm_takedown() during context teardown.
Protect the unmapping sequence with bo_list_lock to ensure the BO is
always fully unmapped when removed from the list. This ensures the BO
is either fully unmapped at context teardown time or present on the
list and unmapped by file_priv_unbind(). |
| Telenium Online Web Application is vulnerable due to a Perl script that
is called to load the login page. Due to improper input validation, an
attacker can inject arbitrary Perl code through a crafted HTTP request,
leading to remote code execution on the server. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: fix null pointer deref in mt7996_conf_tx()
If a link does not have an assigned channel yet, mt7996_vif_link returns
NULL. We still need to store the updated queue settings in that case, and
apply them later.
Move the location of the queue params to within struct mt7996_vif_link. |
| In the Linux kernel, the following vulnerability has been resolved:
gtp: Fix use-after-free in __gtp_encap_destroy().
syzkaller reported use-after-free in __gtp_encap_destroy(). [0]
It shows the same process freed sk and touched it illegally.
Commit e198987e7dd7 ("gtp: fix suspicious RCU usage") added lock_sock()
and release_sock() in __gtp_encap_destroy() to protect sk->sk_user_data,
but release_sock() is called after sock_put() releases the last refcnt.
[0]:
BUG: KASAN: slab-use-after-free in instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
BUG: KASAN: slab-use-after-free in atomic_try_cmpxchg_acquire include/linux/atomic/atomic-instrumented.h:541 [inline]
BUG: KASAN: slab-use-after-free in queued_spin_lock include/asm-generic/qspinlock.h:111 [inline]
BUG: KASAN: slab-use-after-free in do_raw_spin_lock include/linux/spinlock.h:186 [inline]
BUG: KASAN: slab-use-after-free in __raw_spin_lock_bh include/linux/spinlock_api_smp.h:127 [inline]
BUG: KASAN: slab-use-after-free in _raw_spin_lock_bh+0x75/0xe0 kernel/locking/spinlock.c:178
Write of size 4 at addr ffff88800dbef398 by task syz-executor.2/2401
CPU: 1 PID: 2401 Comm: syz-executor.2 Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x72/0xa0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:351 [inline]
print_report+0xcc/0x620 mm/kasan/report.c:462
kasan_report+0xb2/0xe0 mm/kasan/report.c:572
check_region_inline mm/kasan/generic.c:181 [inline]
kasan_check_range+0x39/0x1c0 mm/kasan/generic.c:187
instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
atomic_try_cmpxchg_acquire include/linux/atomic/atomic-instrumented.h:541 [inline]
queued_spin_lock include/asm-generic/qspinlock.h:111 [inline]
do_raw_spin_lock include/linux/spinlock.h:186 [inline]
__raw_spin_lock_bh include/linux/spinlock_api_smp.h:127 [inline]
_raw_spin_lock_bh+0x75/0xe0 kernel/locking/spinlock.c:178
spin_lock_bh include/linux/spinlock.h:355 [inline]
release_sock+0x1f/0x1a0 net/core/sock.c:3526
gtp_encap_disable_sock drivers/net/gtp.c:651 [inline]
gtp_encap_disable+0xb9/0x220 drivers/net/gtp.c:664
gtp_dev_uninit+0x19/0x50 drivers/net/gtp.c:728
unregister_netdevice_many_notify+0x97e/0x1520 net/core/dev.c:10841
rtnl_delete_link net/core/rtnetlink.c:3216 [inline]
rtnl_dellink+0x3c0/0xb30 net/core/rtnetlink.c:3268
rtnetlink_rcv_msg+0x450/0xb10 net/core/rtnetlink.c:6423
netlink_rcv_skb+0x15d/0x450 net/netlink/af_netlink.c:2548
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0x700/0x930 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x91c/0xe30 net/netlink/af_netlink.c:1913
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg+0x1b7/0x200 net/socket.c:747
____sys_sendmsg+0x75a/0x990 net/socket.c:2493
___sys_sendmsg+0x11d/0x1c0 net/socket.c:2547
__sys_sendmsg+0xfe/0x1d0 net/socket.c:2576
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3f/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7f1168b1fe5d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 9f 1b 00 f7 d8 64 89 01 48
RSP: 002b:00007f1167edccc8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00000000004bbf80 RCX: 00007f1168b1fe5d
RDX: 0000000000000000 RSI: 00000000200002c0 RDI: 0000000000000003
RBP: 00000000004bbf80 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007f1168b80530 R15: 0000000000000000
</TASK>
Allocated by task 1483:
kasan_save_stack+0x22/0x50 mm/kasan/common.c:45
kasan_set_track+0x25/0x30 mm/kasan/common.c:52
__kasan_slab_alloc+0x
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Move representor neigh cleanup to profile cleanup_tx
For IP tunnel encapsulation in ECMP (Equal-Cost Multipath) mode, as
the flow is duplicated to the peer eswitch, the related neighbour
information on the peer uplink representor is created as well.
In the cited commit, eswitch devcom unpair is moved to uplink unload
API, specifically the profile->cleanup_tx. If there is a encap rule
offloaded in ECMP mode, when one eswitch does unpair (because of
unloading the driver, for instance), and the peer rule from the peer
eswitch is going to be deleted, the use-after-free error is triggered
while accessing neigh info, as it is already cleaned up in uplink's
profile->disable, which is before its profile->cleanup_tx.
To fix this issue, move the neigh cleanup to profile's cleanup_tx
callback, and after mlx5e_cleanup_uplink_rep_tx is called. The neigh
init is moved to init_tx for symmeter.
[ 2453.376299] BUG: KASAN: slab-use-after-free in mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.379125] Read of size 4 at addr ffff888127af9008 by task modprobe/2496
[ 2453.381542] CPU: 7 PID: 2496 Comm: modprobe Tainted: G B 6.4.0-rc7+ #15
[ 2453.383386] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 2453.384335] Call Trace:
[ 2453.384625] <TASK>
[ 2453.384891] dump_stack_lvl+0x33/0x50
[ 2453.385285] print_report+0xc2/0x610
[ 2453.385667] ? __virt_addr_valid+0xb1/0x130
[ 2453.386091] ? mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.386757] kasan_report+0xae/0xe0
[ 2453.387123] ? mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.387798] mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.388465] mlx5e_rep_encap_entry_detach+0xa6/0xe0 [mlx5_core]
[ 2453.389111] mlx5e_encap_dealloc+0xa7/0x100 [mlx5_core]
[ 2453.389706] mlx5e_tc_tun_encap_dests_unset+0x61/0xb0 [mlx5_core]
[ 2453.390361] mlx5_free_flow_attr_actions+0x11e/0x340 [mlx5_core]
[ 2453.391015] ? complete_all+0x43/0xd0
[ 2453.391398] ? free_flow_post_acts+0x38/0x120 [mlx5_core]
[ 2453.392004] mlx5e_tc_del_fdb_flow+0x4ae/0x690 [mlx5_core]
[ 2453.392618] mlx5e_tc_del_fdb_peers_flow+0x308/0x370 [mlx5_core]
[ 2453.393276] mlx5e_tc_clean_fdb_peer_flows+0xf5/0x140 [mlx5_core]
[ 2453.393925] mlx5_esw_offloads_unpair+0x86/0x540 [mlx5_core]
[ 2453.394546] ? mlx5_esw_offloads_set_ns_peer.isra.0+0x180/0x180 [mlx5_core]
[ 2453.395268] ? down_write+0xaa/0x100
[ 2453.395652] mlx5_esw_offloads_devcom_event+0x203/0x530 [mlx5_core]
[ 2453.396317] mlx5_devcom_send_event+0xbb/0x190 [mlx5_core]
[ 2453.396917] mlx5_esw_offloads_devcom_cleanup+0xb0/0xd0 [mlx5_core]
[ 2453.397582] mlx5e_tc_esw_cleanup+0x42/0x120 [mlx5_core]
[ 2453.398182] mlx5e_rep_tc_cleanup+0x15/0x30 [mlx5_core]
[ 2453.398768] mlx5e_cleanup_rep_tx+0x6c/0x80 [mlx5_core]
[ 2453.399367] mlx5e_detach_netdev+0xee/0x120 [mlx5_core]
[ 2453.399957] mlx5e_netdev_change_profile+0x84/0x170 [mlx5_core]
[ 2453.400598] mlx5e_vport_rep_unload+0xe0/0xf0 [mlx5_core]
[ 2453.403781] mlx5_eswitch_unregister_vport_reps+0x15e/0x190 [mlx5_core]
[ 2453.404479] ? mlx5_eswitch_register_vport_reps+0x200/0x200 [mlx5_core]
[ 2453.405170] ? up_write+0x39/0x60
[ 2453.405529] ? kernfs_remove_by_name_ns+0xb7/0xe0
[ 2453.405985] auxiliary_bus_remove+0x2e/0x40
[ 2453.406405] device_release_driver_internal+0x243/0x2d0
[ 2453.406900] ? kobject_put+0x42/0x2d0
[ 2453.407284] bus_remove_device+0x128/0x1d0
[ 2453.407687] device_del+0x240/0x550
[ 2453.408053] ? waiting_for_supplier_show+0xe0/0xe0
[ 2453.408511] ? kobject_put+0xfa/0x2d0
[ 2453.408889] ? __kmem_cache_free+0x14d/0x280
[ 2453.409310] mlx5_rescan_drivers_locked.part.0+0xcd/0x2b0 [mlx5_core]
[ 2453.409973] mlx5_unregister_device+0x40/0x50 [mlx5_core]
[ 2453.410561] mlx5_uninit_one+0x3d/0x110 [mlx5_core]
[ 2453.411111] remove_one+0x89/0x130 [mlx5_core]
[ 24
---truncated--- |