| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
x86/kexec: fix memory leak of elf header buffer
This is reported by kmemleak detector:
unreferenced object 0xffffc900002a9000 (size 4096):
comm "kexec", pid 14950, jiffies 4295110793 (age 373.951s)
hex dump (first 32 bytes):
7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 .ELF............
04 00 3e 00 01 00 00 00 00 00 00 00 00 00 00 00 ..>.............
backtrace:
[<0000000016a8ef9f>] __vmalloc_node_range+0x101/0x170
[<000000002b66b6c0>] __vmalloc_node+0xb4/0x160
[<00000000ad40107d>] crash_prepare_elf64_headers+0x8e/0xcd0
[<0000000019afff23>] crash_load_segments+0x260/0x470
[<0000000019ebe95c>] bzImage64_load+0x814/0xad0
[<0000000093e16b05>] arch_kexec_kernel_image_load+0x1be/0x2a0
[<000000009ef2fc88>] kimage_file_alloc_init+0x2ec/0x5a0
[<0000000038f5a97a>] __do_sys_kexec_file_load+0x28d/0x530
[<0000000087c19992>] do_syscall_64+0x3b/0x90
[<0000000066e063a4>] entry_SYSCALL_64_after_hwframe+0x44/0xae
In crash_prepare_elf64_headers(), a buffer is allocated via vmalloc() to
store elf headers. While it's not freed back to system correctly when
kdump kernel is reloaded or unloaded. Then memory leak is caused. Fix it
by introducing x86 specific function arch_kimage_file_post_load_cleanup(),
and freeing the buffer there.
And also remove the incorrect elf header buffer freeing code. Before
calling arch specific kexec_file loading function, the image instance has
been initialized. So 'image->elf_headers' must be NULL. It doesn't make
sense to free the elf header buffer in the place.
Three different people have reported three bugs about the memory leak on
x86_64 inside Redhat. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Cancel pending work at closing a MIDI substream
At closing a USB MIDI output substream, there might be still a pending
work, which would eventually access the rawmidi runtime object that is
being released. For fixing the race, make sure to cancel the pending
work at closing. |
| In the Linux kernel, the following vulnerability has been resolved:
ipw2x00: Fix potential NULL dereference in libipw_xmit()
crypt and crypt->ops could be null, so we need to checking null
before dereference |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Move cfg_log_verbose check before calling lpfc_dmp_dbg()
In an attempt to log message 0126 with LOG_TRACE_EVENT, the following hard
lockup call trace hangs the system.
Call Trace:
_raw_spin_lock_irqsave+0x32/0x40
lpfc_dmp_dbg.part.32+0x28/0x220 [lpfc]
lpfc_cmpl_els_fdisc+0x145/0x460 [lpfc]
lpfc_sli_cancel_jobs+0x92/0xd0 [lpfc]
lpfc_els_flush_cmd+0x43c/0x670 [lpfc]
lpfc_els_flush_all_cmd+0x37/0x60 [lpfc]
lpfc_sli4_async_event_proc+0x956/0x1720 [lpfc]
lpfc_do_work+0x1485/0x1d70 [lpfc]
kthread+0x112/0x130
ret_from_fork+0x1f/0x40
Kernel panic - not syncing: Hard LOCKUP
The same CPU tries to claim the phba->port_list_lock twice.
Move the cfg_log_verbose checks as part of the lpfc_printf_vlog() and
lpfc_printf_log() macros before calling lpfc_dmp_dbg(). There is no need
to take the phba->port_list_lock within lpfc_dmp_dbg(). |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix potential double free during failed mount
RHBZ: https://bugzilla.redhat.com/show_bug.cgi?id=2088799 |
| In the Linux kernel, the following vulnerability has been resolved:
rcu-tasks: Fix race in schedule and flush work
While booting secondary CPUs, cpus_read_[lock/unlock] is not keeping
online cpumask stable. The transient online mask results in below
calltrace.
[ 0.324121] CPU1: Booted secondary processor 0x0000000001 [0x410fd083]
[ 0.346652] Detected PIPT I-cache on CPU2
[ 0.347212] CPU2: Booted secondary processor 0x0000000002 [0x410fd083]
[ 0.377255] Detected PIPT I-cache on CPU3
[ 0.377823] CPU3: Booted secondary processor 0x0000000003 [0x410fd083]
[ 0.379040] ------------[ cut here ]------------
[ 0.383662] WARNING: CPU: 0 PID: 10 at kernel/workqueue.c:3084 __flush_work+0x12c/0x138
[ 0.384850] Modules linked in:
[ 0.385403] CPU: 0 PID: 10 Comm: rcu_tasks_rude_ Not tainted 5.17.0-rc3-v8+ #13
[ 0.386473] Hardware name: Raspberry Pi 4 Model B Rev 1.4 (DT)
[ 0.387289] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 0.388308] pc : __flush_work+0x12c/0x138
[ 0.388970] lr : __flush_work+0x80/0x138
[ 0.389620] sp : ffffffc00aaf3c60
[ 0.390139] x29: ffffffc00aaf3d20 x28: ffffffc009c16af0 x27: ffffff80f761df48
[ 0.391316] x26: 0000000000000004 x25: 0000000000000003 x24: 0000000000000100
[ 0.392493] x23: ffffffffffffffff x22: ffffffc009c16b10 x21: ffffffc009c16b28
[ 0.393668] x20: ffffffc009e53861 x19: ffffff80f77fbf40 x18: 00000000d744fcc9
[ 0.394842] x17: 000000000000000b x16: 00000000000001c2 x15: ffffffc009e57550
[ 0.396016] x14: 0000000000000000 x13: ffffffffffffffff x12: 0000000100000000
[ 0.397190] x11: 0000000000000462 x10: ffffff8040258008 x9 : 0000000100000000
[ 0.398364] x8 : 0000000000000000 x7 : ffffffc0093c8bf4 x6 : 0000000000000000
[ 0.399538] x5 : 0000000000000000 x4 : ffffffc00a976e40 x3 : ffffffc00810444c
[ 0.400711] x2 : 0000000000000004 x1 : 0000000000000000 x0 : 0000000000000000
[ 0.401886] Call trace:
[ 0.402309] __flush_work+0x12c/0x138
[ 0.402941] schedule_on_each_cpu+0x228/0x278
[ 0.403693] rcu_tasks_rude_wait_gp+0x130/0x144
[ 0.404502] rcu_tasks_kthread+0x220/0x254
[ 0.405264] kthread+0x174/0x1ac
[ 0.405837] ret_from_fork+0x10/0x20
[ 0.406456] irq event stamp: 102
[ 0.406966] hardirqs last enabled at (101): [<ffffffc0093c8468>] _raw_spin_unlock_irq+0x78/0xb4
[ 0.408304] hardirqs last disabled at (102): [<ffffffc0093b8270>] el1_dbg+0x24/0x5c
[ 0.409410] softirqs last enabled at (54): [<ffffffc0081b80c8>] local_bh_enable+0xc/0x2c
[ 0.410645] softirqs last disabled at (50): [<ffffffc0081b809c>] local_bh_disable+0xc/0x2c
[ 0.411890] ---[ end trace 0000000000000000 ]---
[ 0.413000] smp: Brought up 1 node, 4 CPUs
[ 0.413762] SMP: Total of 4 processors activated.
[ 0.414566] CPU features: detected: 32-bit EL0 Support
[ 0.415414] CPU features: detected: 32-bit EL1 Support
[ 0.416278] CPU features: detected: CRC32 instructions
[ 0.447021] Callback from call_rcu_tasks_rude() invoked.
[ 0.506693] Callback from call_rcu_tasks() invoked.
This commit therefore fixes this issue by applying a single-CPU
optimization to the RCU Tasks Rude grace-period process. The key point
here is that the purpose of this RCU flavor is to force a schedule on
each online CPU since some past event. But the rcu_tasks_rude_wait_gp()
function runs in the context of the RCU Tasks Rude's grace-period kthread,
so there must already have been a context switch on the current CPU since
the call to either synchronize_rcu_tasks_rude() or call_rcu_tasks_rude().
So if there is only a single CPU online, RCU Tasks Rude's grace-period
kthread does not need to anything at all.
It turns out that the rcu_tasks_rude_wait_gp() function's call to
schedule_on_each_cpu() causes problems during early boot. During that
time, there is only one online CPU, namely the boot CPU. Therefore,
applying this single-CPU optimization fixes early-boot instances of
this problem. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: jack: Access input_dev under mutex
It is possible when using ASoC that input_dev is unregistered while
calling snd_jack_report, which causes NULL pointer dereference.
In order to prevent this serialize access to input_dev using mutex lock. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix SCSI I/O completion and abort handler deadlock
During stress I/O tests with 500+ vports, hard LOCKUP call traces are
observed.
CPU A:
native_queued_spin_lock_slowpath+0x192
_raw_spin_lock_irqsave+0x32
lpfc_handle_fcp_err+0x4c6
lpfc_fcp_io_cmd_wqe_cmpl+0x964
lpfc_sli4_fp_handle_cqe+0x266
__lpfc_sli4_process_cq+0x105
__lpfc_sli4_hba_process_cq+0x3c
lpfc_cq_poll_hdler+0x16
irq_poll_softirq+0x76
__softirqentry_text_start+0xe4
irq_exit+0xf7
do_IRQ+0x7f
CPU B:
native_queued_spin_lock_slowpath+0x5b
_raw_spin_lock+0x1c
lpfc_abort_handler+0x13e
scmd_eh_abort_handler+0x85
process_one_work+0x1a7
worker_thread+0x30
kthread+0x112
ret_from_fork+0x1f
Diagram of lockup:
CPUA CPUB
---- ----
lpfc_cmd->buf_lock
phba->hbalock
lpfc_cmd->buf_lock
phba->hbalock
Fix by reordering the taking of the lpfc_cmd->buf_lock and phba->hbalock in
lpfc_abort_handler routine so that it tries to take the lpfc_cmd->buf_lock
first before phba->hbalock. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix null pointer dereference after failing to issue FLOGI and PLOGI
If lpfc_issue_els_flogi() fails and returns non-zero status, the node
reference count is decremented to trigger the release of the nodelist
structure. However, if there is a prior registration or dev-loss-evt work
pending, the node may be released prematurely. When dev-loss-evt
completes, the released node is referenced causing a use-after-free null
pointer dereference.
Similarly, when processing non-zero ELS PLOGI completion status in
lpfc_cmpl_els_plogi(), the ndlp flags are checked for a transport
registration before triggering node removal. If dev-loss-evt work is
pending, the node may be released prematurely and a subsequent call to
lpfc_dev_loss_tmo_handler() results in a use after free ndlp dereference.
Add test for pending dev-loss before decrementing the node reference count
for FLOGI, PLOGI, PRLI, and ADISC handling. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Protect memory leak for NPIV ports sending PLOGI_RJT
There is a potential memory leak in lpfc_ignore_els_cmpl() and
lpfc_els_rsp_reject() that was allocated from NPIV PLOGI_RJT
(lpfc_rcv_plogi()'s login_mbox).
Check if cmdiocb->context_un.mbox was allocated in lpfc_ignore_els_cmpl(),
and then free it back to phba->mbox_mem_pool along with mbox->ctx_buf for
service parameters.
For lpfc_els_rsp_reject() failure, free both the ctx_buf for service
parameters and the login_mbox. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/virtio: fix NULL pointer dereference in virtio_gpu_conn_get_modes
drm_cvt_mode may return NULL and we should check it.
This bug is found by syzkaller:
FAULT_INJECTION stacktrace:
[ 168.567394] FAULT_INJECTION: forcing a failure.
name failslab, interval 1, probability 0, space 0, times 1
[ 168.567403] CPU: 1 PID: 6425 Comm: syz Kdump: loaded Not tainted 4.19.90-vhulk2201.1.0.h1035.kasan.eulerosv2r10.aarch64 #1
[ 168.567406] Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
[ 168.567408] Call trace:
[ 168.567414] dump_backtrace+0x0/0x310
[ 168.567418] show_stack+0x28/0x38
[ 168.567423] dump_stack+0xec/0x15c
[ 168.567427] should_fail+0x3ac/0x3d0
[ 168.567437] __should_failslab+0xb8/0x120
[ 168.567441] should_failslab+0x28/0xc0
[ 168.567445] kmem_cache_alloc_trace+0x50/0x640
[ 168.567454] drm_mode_create+0x40/0x90
[ 168.567458] drm_cvt_mode+0x48/0xc78
[ 168.567477] virtio_gpu_conn_get_modes+0xa8/0x140 [virtio_gpu]
[ 168.567485] drm_helper_probe_single_connector_modes+0x3a4/0xd80
[ 168.567492] drm_mode_getconnector+0x2e0/0xa70
[ 168.567496] drm_ioctl_kernel+0x11c/0x1d8
[ 168.567514] drm_ioctl+0x558/0x6d0
[ 168.567522] do_vfs_ioctl+0x160/0xf30
[ 168.567525] ksys_ioctl+0x98/0xd8
[ 168.567530] __arm64_sys_ioctl+0x50/0xc8
[ 168.567536] el0_svc_common+0xc8/0x320
[ 168.567540] el0_svc_handler+0xf8/0x160
[ 168.567544] el0_svc+0x10/0x218
KASAN stacktrace:
[ 168.567561] BUG: KASAN: null-ptr-deref in virtio_gpu_conn_get_modes+0xb4/0x140 [virtio_gpu]
[ 168.567565] Read of size 4 at addr 0000000000000054 by task syz/6425
[ 168.567566]
[ 168.567571] CPU: 1 PID: 6425 Comm: syz Kdump: loaded Not tainted 4.19.90-vhulk2201.1.0.h1035.kasan.eulerosv2r10.aarch64 #1
[ 168.567573] Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
[ 168.567575] Call trace:
[ 168.567578] dump_backtrace+0x0/0x310
[ 168.567582] show_stack+0x28/0x38
[ 168.567586] dump_stack+0xec/0x15c
[ 168.567591] kasan_report+0x244/0x2f0
[ 168.567594] __asan_load4+0x58/0xb0
[ 168.567607] virtio_gpu_conn_get_modes+0xb4/0x140 [virtio_gpu]
[ 168.567612] drm_helper_probe_single_connector_modes+0x3a4/0xd80
[ 168.567617] drm_mode_getconnector+0x2e0/0xa70
[ 168.567621] drm_ioctl_kernel+0x11c/0x1d8
[ 168.567624] drm_ioctl+0x558/0x6d0
[ 168.567628] do_vfs_ioctl+0x160/0xf30
[ 168.567632] ksys_ioctl+0x98/0xd8
[ 168.567636] __arm64_sys_ioctl+0x50/0xc8
[ 168.567641] el0_svc_common+0xc8/0x320
[ 168.567645] el0_svc_handler+0xf8/0x160
[ 168.567649] el0_svc+0x10/0x218 |
| In the Linux kernel, the following vulnerability has been resolved:
loop: implement ->free_disk
Ensure that the lo_device which is stored in the gendisk private
data is valid until the gendisk is freed. Currently the loop driver
uses a lot of effort to make sure a device is not freed when it is
still in use, but to to fix a potential deadlock this will be relaxed
a bit soon. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: fix double free in si_parse_power_table()
In function si_parse_power_table(), array adev->pm.dpm.ps and its member
is allocated. If the allocation of each member fails, the array itself
is freed and returned with an error code. However, the array is later
freed again in si_dpm_fini() function which is called when the function
returns an error.
This leads to potential double free of the array adev->pm.dpm.ps, as
well as leak of its array members, since the members are not freed in
the allocation function and the array is not nulled when freed.
In addition adev->pm.dpm.num_ps, which keeps track of the allocated
array member, is not updated until the member allocation is
successfully finished, this could also lead to either use after free,
or uninitialized variable access in si_dpm_fini().
Fix this by postponing the free of the array until si_dpm_fini() and
increment adev->pm.dpm.num_ps everytime the array member is allocated. |
| In the Linux kernel, the following vulnerability has been resolved:
md/bitmap: don't set sb values if can't pass sanity check
If bitmap area contains invalid data, kernel will crash then mdadm
triggers "Segmentation fault".
This is cluster-md speical bug. In non-clustered env, mdadm will
handle broken metadata case. In clustered array, only kernel space
handles bitmap slot info. But even this bug only happened in clustered
env, current sanity check is wrong, the code should be changed.
How to trigger: (faulty injection)
dd if=/dev/zero bs=1M count=1 oflag=direct of=/dev/sda
dd if=/dev/zero bs=1M count=1 oflag=direct of=/dev/sdb
mdadm -C /dev/md0 -b clustered -e 1.2 -n 2 -l mirror /dev/sda /dev/sdb
mdadm -Ss
echo aaa > magic.txt
== below modifying slot 2 bitmap data ==
dd if=magic.txt of=/dev/sda seek=16384 bs=1 count=3 <== destroy magic
dd if=/dev/zero of=/dev/sda seek=16436 bs=1 count=4 <== ZERO chunksize
mdadm -A /dev/md0 /dev/sda /dev/sdb
== kernel crashes. mdadm outputs "Segmentation fault" ==
Reason of kernel crash:
In md_bitmap_read_sb (called by md_bitmap_create), bad bitmap magic didn't
block chunksize assignment, and zero value made DIV_ROUND_UP_SECTOR_T()
trigger "divide error".
Crash log:
kernel: md: md0 stopped.
kernel: md/raid1:md0: not clean -- starting background reconstruction
kernel: md/raid1:md0: active with 2 out of 2 mirrors
kernel: dlm: ... ...
kernel: md-cluster: Joined cluster 44810aba-38bb-e6b8-daca-bc97a0b254aa slot 1
kernel: md0: invalid bitmap file superblock: bad magic
kernel: md_bitmap_copy_from_slot can't get bitmap from slot 2
kernel: md-cluster: Could not gather bitmaps from slot 2
kernel: divide error: 0000 [#1] SMP NOPTI
kernel: CPU: 0 PID: 1603 Comm: mdadm Not tainted 5.14.6-1-default
kernel: Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
kernel: RIP: 0010:md_bitmap_create+0x1d1/0x850 [md_mod]
kernel: RSP: 0018:ffffc22ac0843ba0 EFLAGS: 00010246
kernel: ... ...
kernel: Call Trace:
kernel: ? dlm_lock_sync+0xd0/0xd0 [md_cluster 77fe..7a0]
kernel: md_bitmap_copy_from_slot+0x2c/0x290 [md_mod 24ea..d3a]
kernel: load_bitmaps+0xec/0x210 [md_cluster 77fe..7a0]
kernel: md_bitmap_load+0x81/0x1e0 [md_mod 24ea..d3a]
kernel: do_md_run+0x30/0x100 [md_mod 24ea..d3a]
kernel: md_ioctl+0x1290/0x15a0 [md_mod 24ea....d3a]
kernel: ? mddev_unlock+0xaa/0x130 [md_mod 24ea..d3a]
kernel: ? blkdev_ioctl+0xb1/0x2b0
kernel: block_ioctl+0x3b/0x40
kernel: __x64_sys_ioctl+0x7f/0xb0
kernel: do_syscall_64+0x59/0x80
kernel: ? exit_to_user_mode_prepare+0x1ab/0x230
kernel: ? syscall_exit_to_user_mode+0x18/0x40
kernel: ? do_syscall_64+0x69/0x80
kernel: entry_SYSCALL_64_after_hwframe+0x44/0xae
kernel: RIP: 0033:0x7f4a15fa722b
kernel: ... ...
kernel: ---[ end trace 8afa7612f559c868 ]---
kernel: RIP: 0010:md_bitmap_create+0x1d1/0x850 [md_mod] |
| In the Linux kernel, the following vulnerability has been resolved:
media: cx25821: Fix the warning when removing the module
When removing the module, we will get the following warning:
[ 14.746697] remove_proc_entry: removing non-empty directory 'irq/21', leaking at least 'cx25821[1]'
[ 14.747449] WARNING: CPU: 4 PID: 368 at fs/proc/generic.c:717 remove_proc_entry+0x389/0x3f0
[ 14.751611] RIP: 0010:remove_proc_entry+0x389/0x3f0
[ 14.759589] Call Trace:
[ 14.759792] <TASK>
[ 14.759975] unregister_irq_proc+0x14c/0x170
[ 14.760340] irq_free_descs+0x94/0xe0
[ 14.760640] mp_unmap_irq+0xb6/0x100
[ 14.760937] acpi_unregister_gsi_ioapic+0x27/0x40
[ 14.761334] acpi_pci_irq_disable+0x1d3/0x320
[ 14.761688] pci_disable_device+0x1ad/0x380
[ 14.762027] ? _raw_spin_unlock_irqrestore+0x2d/0x60
[ 14.762442] ? cx25821_shutdown+0x20/0x9f0 [cx25821]
[ 14.762848] cx25821_finidev+0x48/0xc0 [cx25821]
[ 14.763242] pci_device_remove+0x92/0x240
Fix this by freeing the irq before call pci_disable_device(). |
| In the Linux kernel, the following vulnerability has been resolved:
media: pci: cx23885: Fix the error handling in cx23885_initdev()
When the driver fails to call the dma_set_mask(), the driver will get
the following splat:
[ 55.853884] BUG: KASAN: use-after-free in __process_removed_driver+0x3c/0x240
[ 55.854486] Read of size 8 at addr ffff88810de60408 by task modprobe/590
[ 55.856822] Call Trace:
[ 55.860327] __process_removed_driver+0x3c/0x240
[ 55.861347] bus_for_each_dev+0x102/0x160
[ 55.861681] i2c_del_driver+0x2f/0x50
This is because the driver has initialized the i2c related resources
in cx23885_dev_setup() but not released them in error handling, fix this
bug by modifying the error path that jumps after failing to call the
dma_set_mask(). |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: jz4740: Apply DMA engine limits to maximum segment size
Do what is done in other DMA-enabled MMC host drivers (cf. host/mmci.c) and
limit the maximum segment size based on the DMA engine's capabilities. This
is needed to avoid warnings like the following with CONFIG_DMA_API_DEBUG=y.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 21 at kernel/dma/debug.c:1162 debug_dma_map_sg+0x2f4/0x39c
DMA-API: jz4780-dma 13420000.dma-controller: mapping sg segment longer than device claims to support [len=98304] [max=65536]
CPU: 0 PID: 21 Comm: kworker/0:1H Not tainted 5.18.0-rc1 #19
Workqueue: kblockd blk_mq_run_work_fn
Stack : 81575aec 00000004 80620000 80620000 80620000 805e7358 00000009 801537ac
814c832c 806276e3 806e34b4 80620000 81575aec 00000001 81575ab8 09291444
00000000 00000000 805e7358 81575958 ffffffea 8157596c 00000000 636f6c62
6220646b 80387a70 0000000f 6d5f6b6c 80620000 00000000 81575ba4 00000009
805e170c 80896640 00000001 00010000 00000000 00000000 00006098 806e0000
...
Call Trace:
[<80107670>] show_stack+0x84/0x120
[<80528cd8>] __warn+0xb8/0xec
[<80528d78>] warn_slowpath_fmt+0x6c/0xb8
[<8016f1d4>] debug_dma_map_sg+0x2f4/0x39c
[<80169d4c>] __dma_map_sg_attrs+0xf0/0x118
[<8016a27c>] dma_map_sg_attrs+0x14/0x28
[<804f66b4>] jz4740_mmc_prepare_dma_data+0x74/0xa4
[<804f6714>] jz4740_mmc_pre_request+0x30/0x54
[<804f4ff4>] mmc_blk_mq_issue_rq+0x6e0/0x7bc
[<804f5590>] mmc_mq_queue_rq+0x220/0x2d4
[<8038b2c0>] blk_mq_dispatch_rq_list+0x480/0x664
[<80391040>] blk_mq_do_dispatch_sched+0x2dc/0x370
[<80391468>] __blk_mq_sched_dispatch_requests+0xec/0x164
[<80391540>] blk_mq_sched_dispatch_requests+0x44/0x94
[<80387900>] __blk_mq_run_hw_queue+0xb0/0xcc
[<80134c14>] process_one_work+0x1b8/0x264
[<80134ff8>] worker_thread+0x2ec/0x3b8
[<8013b13c>] kthread+0x104/0x10c
[<80101dcc>] ret_from_kernel_thread+0x14/0x1c
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix resource leak in lpfc_sli4_send_seq_to_ulp()
If no handler is found in lpfc_complete_unsol_iocb() to match the rctl of a
received frame, the frame is dropped and resources are leaked.
Fix by returning resources when discarding an unhandled frame type. Update
lpfc_fc_frame_check() handling of NOP basic link service. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Inhibit aborts if external loopback plug is inserted
After running a short external loopback test, when the external loopback is
removed and a normal cable inserted that is directly connected to a target
device, the system oops in the llpfc_set_rrq_active() routine.
When the loopback was inserted an FLOGI was transmit. As we're looped back,
we receive the FLOGI request. The FLOGI is ABTS'd as we recognize the same
wppn thus understand it's a loopback. However, as the ABTS sends address
information the port is not set to (fffffe), the ABTS is dropped on the
wire. A short 1 frame loopback test is run and completes before the ABTS
times out. The looback is unplugged and the new cable plugged in, and the
an FLOGI to the new device occurs and completes. Due to a mixup in ref
counting the completion of the new FLOGI releases the fabric ndlp. Then the
original ABTS completes and references the released ndlp generating the
oops.
Correct by no-op'ing the ABTS when in loopback mode (it will be dropped
anyway). Added a flag to track the mode to recognize when it should be
no-op'd. |
| In the Linux kernel, the following vulnerability has been resolved:
net: remove two BUG() from skb_checksum_help()
I have a syzbot report that managed to get a crash in skb_checksum_help()
If syzbot can trigger these BUG(), it makes sense to replace
them with more friendly WARN_ON_ONCE() since skb_checksum_help()
can instead return an error code.
Note that syzbot will still crash there, until real bug is fixed. |