Search Results (67378 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-60153 1 Wordpress 1 Wordpress 2025-09-29 7.5 High
Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in wpshuffle Subscribe To Unlock allows PHP Local File Inclusion. This issue affects Subscribe To Unlock: from n/a through 1.1.5.
CVE-2025-60170 1 Wordpress 1 Wordpress 2025-09-29 7.1 High
Cross-Site Request Forgery (CSRF) vulnerability in Taraprasad Swain HTACCESS IP Blocker allows Stored XSS. This issue affects HTACCESS IP Blocker: from n/a through 1.0.
CVE-2025-60126 2 Pluginops, Wordpress 2 Testimonial Slider, Wordpress 2025-09-29 8.8 High
Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in PluginOps Testimonial Slider allows PHP Local File Inclusion. This issue affects Testimonial Slider: from n/a through 3.5.8.6.
CVE-2025-60171 3 Woocommerce, Wordpress, Yourplugins 3 Woocommerce, Wordpress, Conditional Cart Messages For Woocommerce 2025-09-29 7.1 High
Cross-Site Request Forgery (CSRF) vulnerability in yourplugins Conditional Cart Messages for WooCommerce – YourPlugins.com allows Stored XSS. This issue affects Conditional Cart Messages for WooCommerce – YourPlugins.com: from n/a through 1.2.10.
CVE-2025-60172 1 Wordpress 1 Wordpress 2025-09-29 7.1 High
Cross-Site Request Forgery (CSRF) vulnerability in flytedesk Flytedesk Digital allows Stored XSS. This issue affects Flytedesk Digital: from n/a through 20181101.
CVE-2025-39888 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fuse: Block access to folio overlimit syz reported a slab-out-of-bounds Write in fuse_dev_do_write. When the number of bytes to be retrieved is truncated to the upper limit by fc->max_pages and there is an offset, the oob is triggered. Add a loop termination condition to prevent overruns.
CVE-2025-39881 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: kernfs: Fix UAF in polling when open file is released A use-after-free (UAF) vulnerability was identified in the PSI (Pressure Stall Information) monitoring mechanism: BUG: KASAN: slab-use-after-free in psi_trigger_poll+0x3c/0x140 Read of size 8 at addr ffff3de3d50bd308 by task systemd/1 psi_trigger_poll+0x3c/0x140 cgroup_pressure_poll+0x70/0xa0 cgroup_file_poll+0x8c/0x100 kernfs_fop_poll+0x11c/0x1c0 ep_item_poll.isra.0+0x188/0x2c0 Allocated by task 1: cgroup_file_open+0x88/0x388 kernfs_fop_open+0x73c/0xaf0 do_dentry_open+0x5fc/0x1200 vfs_open+0xa0/0x3f0 do_open+0x7e8/0xd08 path_openat+0x2fc/0x6b0 do_filp_open+0x174/0x368 Freed by task 8462: cgroup_file_release+0x130/0x1f8 kernfs_drain_open_files+0x17c/0x440 kernfs_drain+0x2dc/0x360 kernfs_show+0x1b8/0x288 cgroup_file_show+0x150/0x268 cgroup_pressure_write+0x1dc/0x340 cgroup_file_write+0x274/0x548 Reproduction Steps: 1. Open test/cpu.pressure and establish epoll monitoring 2. Disable monitoring: echo 0 > test/cgroup.pressure 3. Re-enable monitoring: echo 1 > test/cgroup.pressure The race condition occurs because: 1. When cgroup.pressure is disabled (echo 0 > cgroup.pressure), it: - Releases PSI triggers via cgroup_file_release() - Frees of->priv through kernfs_drain_open_files() 2. While epoll still holds reference to the file and continues polling 3. Re-enabling (echo 1 > cgroup.pressure) accesses freed of->priv epolling disable/enable cgroup.pressure fd=open(cpu.pressure) while(1) ... epoll_wait kernfs_fop_poll kernfs_get_active = true echo 0 > cgroup.pressure ... cgroup_file_show kernfs_show // inactive kn kernfs_drain_open_files cft->release(of); kfree(ctx); ... kernfs_get_active = false echo 1 > cgroup.pressure kernfs_show kernfs_activate_one(kn); kernfs_fop_poll kernfs_get_active = true cgroup_file_poll psi_trigger_poll // UAF ... end: close(fd) To address this issue, introduce kernfs_get_active_of() for kernfs open files to obtain active references. This function will fail if the open file has been released. Replace kernfs_get_active() with kernfs_get_active_of() to prevent further operations on released file descriptors.
CVE-2025-39877 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: fix use-after-free in state_show() state_show() reads kdamond->damon_ctx without holding damon_sysfs_lock. This allows a use-after-free race: CPU 0 CPU 1 ----- ----- state_show() damon_sysfs_turn_damon_on() ctx = kdamond->damon_ctx; mutex_lock(&damon_sysfs_lock); damon_destroy_ctx(kdamond->damon_ctx); kdamond->damon_ctx = NULL; mutex_unlock(&damon_sysfs_lock); damon_is_running(ctx); /* ctx is freed */ mutex_lock(&ctx->kdamond_lock); /* UAF */ (The race can also occur with damon_sysfs_kdamonds_rm_dirs() and damon_sysfs_kdamond_release(), which free or replace the context under damon_sysfs_lock.) Fix by taking damon_sysfs_lock before dereferencing the context, mirroring the locking used in pid_show(). The bug has existed since state_show() first accessed kdamond->damon_ctx.
CVE-2025-39875 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: igb: Fix NULL pointer dereference in ethtool loopback test The igb driver currently causes a NULL pointer dereference when executing the ethtool loopback test. This occurs because there is no associated q_vector for the test ring when it is set up, as interrupts are typically not added to the test rings. Since commit 5ef44b3cb43b removed the napi_id assignment in __xdp_rxq_info_reg(), there is no longer a need to pass a napi_id to it. Therefore, simply use 0 as the last parameter.
CVE-2025-39866 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fs: writeback: fix use-after-free in __mark_inode_dirty() An use-after-free issue occurred when __mark_inode_dirty() get the bdi_writeback that was in the progress of switching. CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1 ...... pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __mark_inode_dirty+0x124/0x418 lr : __mark_inode_dirty+0x118/0x418 sp : ffffffc08c9dbbc0 ........ Call trace: __mark_inode_dirty+0x124/0x418 generic_update_time+0x4c/0x60 file_modified+0xcc/0xd0 ext4_buffered_write_iter+0x58/0x124 ext4_file_write_iter+0x54/0x704 vfs_write+0x1c0/0x308 ksys_write+0x74/0x10c __arm64_sys_write+0x1c/0x28 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x40/0xe4 el0t_64_sync_handler+0x120/0x12c el0t_64_sync+0x194/0x198 Root cause is: systemd-random-seed kworker ---------------------------------------------------------------------- ___mark_inode_dirty inode_switch_wbs_work_fn spin_lock(&inode->i_lock); inode_attach_wb locked_inode_to_wb_and_lock_list get inode->i_wb spin_unlock(&inode->i_lock); spin_lock(&wb->list_lock) spin_lock(&inode->i_lock) inode_io_list_move_locked spin_unlock(&wb->list_lock) spin_unlock(&inode->i_lock) spin_lock(&old_wb->list_lock) inode_do_switch_wbs spin_lock(&inode->i_lock) inode->i_wb = new_wb spin_unlock(&inode->i_lock) spin_unlock(&old_wb->list_lock) wb_put_many(old_wb, nr_switched) cgwb_release old wb released wb_wakeup_delayed() accesses wb, then trigger the use-after-free issue Fix this race condition by holding inode spinlock until wb_wakeup_delayed() finished.
CVE-2025-39865 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tee: fix NULL pointer dereference in tee_shm_put tee_shm_put have NULL pointer dereference: __optee_disable_shm_cache --> shm = reg_pair_to_ptr(...);//shm maybe return NULL tee_shm_free(shm); --> tee_shm_put(shm);//crash Add check in tee_shm_put to fix it. panic log: Unable to handle kernel paging request at virtual address 0000000000100cca Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=0000002049d07000 [0000000000100cca] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000096000004 [#1] SMP CPU: 2 PID: 14442 Comm: systemd-sleep Tainted: P OE ------- ---- 6.6.0-39-generic #38 Source Version: 938b255f6cb8817c95b0dd5c8c2944acfce94b07 Hardware name: greatwall GW-001Y1A-FTH, BIOS Great Wall BIOS V3.0 10/26/2022 pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : tee_shm_put+0x24/0x188 lr : tee_shm_free+0x14/0x28 sp : ffff001f98f9faf0 x29: ffff001f98f9faf0 x28: ffff0020df543cc0 x27: 0000000000000000 x26: ffff001f811344a0 x25: ffff8000818dac00 x24: ffff800082d8d048 x23: ffff001f850fcd18 x22: 0000000000000001 x21: ffff001f98f9fb88 x20: ffff001f83e76218 x19: ffff001f83e761e0 x18: 000000000000ffff x17: 303a30303a303030 x16: 0000000000000000 x15: 0000000000000003 x14: 0000000000000001 x13: 0000000000000000 x12: 0101010101010101 x11: 0000000000000001 x10: 0000000000000001 x9 : ffff800080e08d0c x8 : ffff001f98f9fb88 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : ffff001f83e761e0 x1 : 00000000ffff001f x0 : 0000000000100cca Call trace: tee_shm_put+0x24/0x188 tee_shm_free+0x14/0x28 __optee_disable_shm_cache+0xa8/0x108 optee_shutdown+0x28/0x38 platform_shutdown+0x28/0x40 device_shutdown+0x144/0x2b0 kernel_power_off+0x3c/0x80 hibernate+0x35c/0x388 state_store+0x64/0x80 kobj_attr_store+0x14/0x28 sysfs_kf_write+0x48/0x60 kernfs_fop_write_iter+0x128/0x1c0 vfs_write+0x270/0x370 ksys_write+0x6c/0x100 __arm64_sys_write+0x20/0x30 invoke_syscall+0x4c/0x120 el0_svc_common.constprop.0+0x44/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x24/0x88 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x14c/0x15
CVE-2025-39864 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: fix use-after-free in cmp_bss() Following bss_free() quirk introduced in commit 776b3580178f ("cfg80211: track hidden SSID networks properly"), adjust cfg80211_update_known_bss() to free the last beacon frame elements only if they're not shared via the corresponding 'hidden_beacon_bss' pointer.
CVE-2025-39863 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix use-after-free when rescheduling brcmf_btcoex_info work The brcmf_btcoex_detach() only shuts down the btcoex timer, if the flag timer_on is false. However, the brcmf_btcoex_timerfunc(), which runs as timer handler, sets timer_on to false. This creates critical race conditions: 1.If brcmf_btcoex_detach() is called while brcmf_btcoex_timerfunc() is executing, it may observe timer_on as false and skip the call to timer_shutdown_sync(). 2.The brcmf_btcoex_timerfunc() may then reschedule the brcmf_btcoex_info worker after the cancel_work_sync() has been executed, resulting in use-after-free bugs. The use-after-free bugs occur in two distinct scenarios, depending on the timing of when the brcmf_btcoex_info struct is freed relative to the execution of its worker thread. Scenario 1: Freed before the worker is scheduled The brcmf_btcoex_info is deallocated before the worker is scheduled. A race condition can occur when schedule_work(&bt_local->work) is called after the target memory has been freed. The sequence of events is detailed below: CPU0 | CPU1 brcmf_btcoex_detach | brcmf_btcoex_timerfunc | bt_local->timer_on = false; if (cfg->btcoex->timer_on) | ... | cancel_work_sync(); | ... | kfree(cfg->btcoex); // FREE | | schedule_work(&bt_local->work); // USE Scenario 2: Freed after the worker is scheduled The brcmf_btcoex_info is freed after the worker has been scheduled but before or during its execution. In this case, statements within the brcmf_btcoex_handler() — such as the container_of macro and subsequent dereferences of the brcmf_btcoex_info object will cause a use-after-free access. The following timeline illustrates this scenario: CPU0 | CPU1 brcmf_btcoex_detach | brcmf_btcoex_timerfunc | bt_local->timer_on = false; if (cfg->btcoex->timer_on) | ... | cancel_work_sync(); | ... | schedule_work(); // Reschedule | kfree(cfg->btcoex); // FREE | brcmf_btcoex_handler() // Worker /* | btci = container_of(....); // USE The kfree() above could | ... also occur at any point | btci-> // USE during the worker's execution| */ | To resolve the race conditions, drop the conditional check and call timer_shutdown_sync() directly. It can deactivate the timer reliably, regardless of its current state. Once stopped, the timer_on state is then set to false.
CVE-2025-39861 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: vhci: Prevent use-after-free by removing debugfs files early Move the creation of debugfs files into a dedicated function, and ensure they are explicitly removed during vhci_release(), before associated data structures are freed. Previously, debugfs files such as "force_suspend", "force_wakeup", and others were created under hdev->debugfs but not removed in vhci_release(). Since vhci_release() frees the backing vhci_data structure, any access to these files after release would result in use-after-free errors. Although hdev->debugfs is later freed in hci_release_dev(), user can access files after vhci_data is freed but before hdev->debugfs is released.
CVE-2025-39858 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: eth: mlx4: Fix IS_ERR() vs NULL check bug in mlx4_en_create_rx_ring Replace NULL check with IS_ERR() check after calling page_pool_create() since this function returns error pointers (ERR_PTR). Using NULL check could lead to invalid pointer dereference.
CVE-2025-39857 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/smc: fix one NULL pointer dereference in smc_ib_is_sg_need_sync() BUG: kernel NULL pointer dereference, address: 00000000000002ec PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP PTI CPU: 28 UID: 0 PID: 343 Comm: kworker/28:1 Kdump: loaded Tainted: G OE 6.17.0-rc2+ #9 NONE Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 Workqueue: smc_hs_wq smc_listen_work [smc] RIP: 0010:smc_ib_is_sg_need_sync+0x9e/0xd0 [smc] ... Call Trace: <TASK> smcr_buf_map_link+0x211/0x2a0 [smc] __smc_buf_create+0x522/0x970 [smc] smc_buf_create+0x3a/0x110 [smc] smc_find_rdma_v2_device_serv+0x18f/0x240 [smc] ? smc_vlan_by_tcpsk+0x7e/0xe0 [smc] smc_listen_find_device+0x1dd/0x2b0 [smc] smc_listen_work+0x30f/0x580 [smc] process_one_work+0x18c/0x340 worker_thread+0x242/0x360 kthread+0xe7/0x220 ret_from_fork+0x13a/0x160 ret_from_fork_asm+0x1a/0x30 </TASK> If the software RoCE device is used, ibdev->dma_device is a null pointer. As a result, the problem occurs. Null pointer detection is added to prevent problems.
CVE-2025-39855 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: fix NULL access of tx->in_use in ice_ptp_ts_irq The E810 device has support for a "low latency" firmware interface to access and read the Tx timestamps. This interface does not use the standard Tx timestamp logic, due to the latency overhead of proxying sideband command requests over the firmware AdminQ. The logic still makes use of the Tx timestamp tracking structure, ice_ptp_tx, as it uses the same "ready" bitmap to track which Tx timestamps complete. Unfortunately, the ice_ptp_ts_irq() function does not check if the tracker is initialized before its first access. This results in NULL dereference or use-after-free bugs similar to the following: [245977.278756] BUG: kernel NULL pointer dereference, address: 0000000000000000 [245977.278774] RIP: 0010:_find_first_bit+0x19/0x40 [245977.278796] Call Trace: [245977.278809] ? ice_misc_intr+0x364/0x380 [ice] This can occur if a Tx timestamp interrupt races with the driver reset logic. Fix this by only checking the in_use bitmap (and other fields) if the tracker is marked as initialized. The reset flow will clear the init field under lock before it tears the tracker down, thus preventing any use-after-free or NULL access.
CVE-2025-39854 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: fix NULL access of tx->in_use in ice_ll_ts_intr Recent versions of the E810 firmware have support for an extra interrupt to handle report of the "low latency" Tx timestamps coming from the specialized low latency firmware interface. Instead of polling the registers, software can wait until the low latency interrupt is fired. This logic makes use of the Tx timestamp tracking structure, ice_ptp_tx, as it uses the same "ready" bitmap to track which Tx timestamps complete. Unfortunately, the ice_ll_ts_intr() function does not check if the tracker is initialized before its first access. This results in NULL dereference or use-after-free bugs similar to the issues fixed in the ice_ptp_ts_irq() function. Fix this by only checking the in_use bitmap (and other fields) if the tracker is marked as initialized. The reset flow will clear the init field under lock before it tears the tracker down, thus preventing any use-after-free or NULL access.
CVE-2025-39853 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: i40e: Fix potential invalid access when MAC list is empty list_first_entry() never returns NULL - if the list is empty, it still returns a pointer to an invalid object, leading to potential invalid memory access when dereferenced. Fix this by using list_first_entry_or_null instead of list_first_entry.
CVE-2025-39851 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: vxlan: Fix NPD when refreshing an FDB entry with a nexthop object VXLAN FDB entries can point to either a remote destination or an FDB nexthop group. The latter is usually used in EVPN deployments where learning is disabled. However, when learning is enabled, an incoming packet might try to refresh an FDB entry that points to an FDB nexthop group and therefore does not have a remote. Such packets should be dropped, but they are only dropped after dereferencing the non-existent remote, resulting in a NPD [1] which can be reproduced using [2]. Fix by dropping such packets earlier. Remove the misleading comment from first_remote_rcu(). [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 [...] CPU: 13 UID: 0 PID: 361 Comm: mausezahn Not tainted 6.17.0-rc1-virtme-g9f6b606b6b37 #1 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014 RIP: 0010:vxlan_snoop+0x98/0x1e0 [...] Call Trace: <TASK> vxlan_encap_bypass+0x209/0x240 encap_bypass_if_local+0xb1/0x100 vxlan_xmit_one+0x1375/0x17e0 vxlan_xmit+0x6b4/0x15f0 dev_hard_start_xmit+0x5d/0x1c0 __dev_queue_xmit+0x246/0xfd0 packet_sendmsg+0x113a/0x1850 __sock_sendmsg+0x38/0x70 __sys_sendto+0x126/0x180 __x64_sys_sendto+0x24/0x30 do_syscall_64+0xa4/0x260 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [2] #!/bin/bash ip address add 192.0.2.1/32 dev lo ip address add 192.0.2.2/32 dev lo ip nexthop add id 1 via 192.0.2.3 fdb ip nexthop add id 10 group 1 fdb ip link add name vx0 up type vxlan id 10010 local 192.0.2.1 dstport 12345 localbypass ip link add name vx1 up type vxlan id 10020 local 192.0.2.2 dstport 54321 learning bridge fdb add 00:11:22:33:44:55 dev vx0 self static dst 192.0.2.2 port 54321 vni 10020 bridge fdb add 00:aa:bb:cc:dd:ee dev vx1 self static nhid 10 mausezahn vx0 -a 00:aa:bb:cc:dd:ee -b 00:11:22:33:44:55 -c 1 -q