| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: do not compare internal table flags on updates
Restore skipping transaction if table update does not modify flags. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: avoid stack overflow warnings with clang
A previous patch worked around a KASAN issue in stv0367, now a similar
problem showed up with clang:
drivers/media/dvb-frontends/stv0367.c:1222:12: error: stack frame size (3624) exceeds limit (2048) in 'stv0367ter_set_frontend' [-Werror,-Wframe-larger-than]
1214 | static int stv0367ter_set_frontend(struct dvb_frontend *fe)
Rework the stv0367_writereg() function to be simpler and mark both
register access functions as noinline_for_stack so the temporary
i2c_msg structures do not get duplicated on the stack when KASAN_STACK
is enabled. |
| AVTECH SECURITY Corporation DGM1104 FullImg-1015-1004-1006-1003 was discovered to contain an authenticated command injection vulnerability in the Machine.cgi endpoint. This vulnerability allows attackers to execute arbitrary commands via a crafted input. |
| AVTECH SECURITY Corporation DGM1104 FullImg-1015-1004-1006-1003 was discovered to contain an authenticated command injection vulnerability in the NetFailDetectD binary. This vulnerability allows attackers to execute arbitrary commands via a crafted input. |
| AVTECH SECURITY Corporation DGM1104 FullImg-1015-1004-1006-1003 was discovered to contain an authenticated command injection vulnerability in the SMB server function. This vulnerability allows attackers to execute arbitrary commands via a crafted input. |
| A weakness has been identified in H3C Magic B0 up to 100R002. This impacts the function EditWlanMacList of the file /goform/aspForm. This manipulation of the argument param causes buffer overflow. Remote exploitation of the attack is possible. The exploit has been made available to the public and could be exploited. The vendor was contacted early about this disclosure but did not respond in any way. |
| A denial-of-service vulnerability exists in github.com/sirupsen/logrus when using Entry.Writer() to log a single-line payload larger than 64KB without newline characters. Due to limitations in the internal bufio.Scanner, the read fails with "token too long" and the writer pipe is closed, leaving Writer() unusable and causing application unavailability (DoS). This affects versions < 1.8.3, 1.9.0, and 1.9.2. The issue is fixed in 1.8.3, 1.9.1, and 1.9.3+, where the input is chunked and the writer continues to function even if an error is logged. |
| A vulnerability has been identified in Genexis Platinum P4410 router (Firmware P4410-V2–1.41) that allows a local network attacker to achieve Remote Code Execution (RCE) with root privileges. The issue occurs due to improper session invalidation after administrator logout. When an administrator logs out, the session token remains valid. An attacker on the local network can reuse this stale token to send crafted requests via the router’s diagnostic endpoint, resulting in command execution as root. |
| This vulnerability fundamentally arises from yzcheng90 X-SpringBoot 6.0's implementation of role-based access control (RBAC) through dual dependency on frontend menu systems and backend permission tables, without enforcing atomic synchronization between these components. The critical flaw manifests when frontend menu updates (such as privilege revocation) fail to propagate to the backend permission table in real-time, creating a dangerous desynchronization. While users lose access to restricted functions through the web interface (as UI elements properly disappear), the stale permission records still validate unauthorized API requests when accessed directly through tools like Postman. Attackers exploiting this inconsistency can perform privileged operations including but not limited to: creating high-permission user accounts, accessing sensitive data beyond their clearance level, and executing admin-level commands. |
| An issue in the Bluetooth Human Interface Device (HID) of JXL 9 Inch Car Android Double Din Player Android v12.0 allows attackers to inject arbitrary keystrokes via a spoofed Bluetooth HID device. |
| Solstice Pod API (version 5.5, 6.2) contains an unauthenticated API endpoint (`/api/config`) that exposes sensitive information such as the session key, server version, product details, and display name. Unauthorized users can extract live session information by accessing this endpoint without authentication. |
| A flaw has been found in GreenCMS 2.3.0603. Affected by this issue is some unknown functionality of the file /Admin/Controller/CustomController.class.php of the component Menu Management Page. This manipulation of the argument Link causes cross site scripting. The attack may be initiated remotely. The exploit has been published and may be used. This vulnerability only affects products that are no longer supported by the maintainer. |
| Improper Validation of Specified Quantity in Input vulnerability in Mitsubishi Electric CNC Series allows a remote unauthenticated attacker to cause Denial of Service (DoS) condition on the product by sending specially crafted packets to TCP port 683, causing an emergency stop. |
| A flaw was found in util-linux. This vulnerability allows a heap buffer overread when processing 256-byte usernames, specifically within the `setpwnam()` function, affecting SUID (Set User ID) login-utils utilities writing to the password database. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: flowtable: account for Ethernet header in nf_flow_pppoe_proto()
syzbot found a potential access to uninit-value in nf_flow_pppoe_proto()
Blamed commit forgot the Ethernet header.
BUG: KMSAN: uninit-value in nf_flow_offload_inet_hook+0x7e4/0x940 net/netfilter/nf_flow_table_inet.c:27
nf_flow_offload_inet_hook+0x7e4/0x940 net/netfilter/nf_flow_table_inet.c:27
nf_hook_entry_hookfn include/linux/netfilter.h:157 [inline]
nf_hook_slow+0xe1/0x3d0 net/netfilter/core.c:623
nf_hook_ingress include/linux/netfilter_netdev.h:34 [inline]
nf_ingress net/core/dev.c:5742 [inline]
__netif_receive_skb_core+0x4aff/0x70c0 net/core/dev.c:5837
__netif_receive_skb_one_core net/core/dev.c:5975 [inline]
__netif_receive_skb+0xcc/0xac0 net/core/dev.c:6090
netif_receive_skb_internal net/core/dev.c:6176 [inline]
netif_receive_skb+0x57/0x630 net/core/dev.c:6235
tun_rx_batched+0x1df/0x980 drivers/net/tun.c:1485
tun_get_user+0x4ee0/0x6b40 drivers/net/tun.c:1938
tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1984
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0xb4b/0x1580 fs/read_write.c:686
ksys_write fs/read_write.c:738 [inline]
__do_sys_write fs/read_write.c:749 [inline] |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Set DMA unmap len correctly for XDP_REDIRECT
When transmitting an XDP_REDIRECT packet, call dma_unmap_len_set()
with the proper length instead of 0. This bug triggers this warning
on a system with IOMMU enabled:
WARNING: CPU: 36 PID: 0 at drivers/iommu/dma-iommu.c:842 __iommu_dma_unmap+0x159/0x170
RIP: 0010:__iommu_dma_unmap+0x159/0x170
Code: a8 00 00 00 00 48 c7 45 b0 00 00 00 00 48 c7 45 c8 00 00 00 00 48 c7 45 a0 ff ff ff ff 4c 89 45
b8 4c 89 45 c0 e9 77 ff ff ff <0f> 0b e9 60 ff ff ff e8 8b bf 6a 00 66 66 2e 0f 1f 84 00 00 00 00
RSP: 0018:ff22d31181150c88 EFLAGS: 00010206
RAX: 0000000000002000 RBX: 00000000e13a0000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ff22d31181150cf0 R08: ff22d31181150ca8 R09: 0000000000000000
R10: 0000000000000000 R11: ff22d311d36c9d80 R12: 0000000000001000
R13: ff13544d10645010 R14: ff22d31181150c90 R15: ff13544d0b2bac00
FS: 0000000000000000(0000) GS:ff13550908a00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005be909dacff8 CR3: 0008000173408003 CR4: 0000000000f71ef0
PKRU: 55555554
Call Trace:
<IRQ>
? show_regs+0x6d/0x80
? __warn+0x89/0x160
? __iommu_dma_unmap+0x159/0x170
? report_bug+0x17e/0x1b0
? handle_bug+0x46/0x90
? exc_invalid_op+0x18/0x80
? asm_exc_invalid_op+0x1b/0x20
? __iommu_dma_unmap+0x159/0x170
? __iommu_dma_unmap+0xb3/0x170
iommu_dma_unmap_page+0x4f/0x100
dma_unmap_page_attrs+0x52/0x220
? srso_alias_return_thunk+0x5/0xfbef5
? xdp_return_frame+0x2e/0xd0
bnxt_tx_int_xdp+0xdf/0x440 [bnxt_en]
__bnxt_poll_work_done+0x81/0x1e0 [bnxt_en]
bnxt_poll+0xd3/0x1e0 [bnxt_en] |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix potential use-after-free in oplock/lease break ack
If ksmbd_iov_pin_rsp return error, use-after-free can happen by
accessing opinfo->state and opinfo_put and ksmbd_fd_put could
called twice. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: nfsd4_spo_must_allow() must check this is a v4 compound request
If the request being processed is not a v4 compound request, then
examining the cstate can have undefined results.
This patch adds a check that the rpc procedure being executed
(rq_procinfo) is the NFSPROC4_COMPOUND procedure. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Reject SEV{-ES} intra host migration if vCPU creation is in-flight
Reject migration of SEV{-ES} state if either the source or destination VM
is actively creating a vCPU, i.e. if kvm_vm_ioctl_create_vcpu() is in the
section between incrementing created_vcpus and online_vcpus. The bulk of
vCPU creation runs _outside_ of kvm->lock to allow creating multiple vCPUs
in parallel, and so sev_info.es_active can get toggled from false=>true in
the destination VM after (or during) svm_vcpu_create(), resulting in an
SEV{-ES} VM effectively having a non-SEV{-ES} vCPU.
The issue manifests most visibly as a crash when trying to free a vCPU's
NULL VMSA page in an SEV-ES VM, but any number of things can go wrong.
BUG: unable to handle page fault for address: ffffebde00000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP KASAN NOPTI
CPU: 227 UID: 0 PID: 64063 Comm: syz.5.60023 Tainted: G U O 6.15.0-smp-DEV #2 NONE
Tainted: [U]=USER, [O]=OOT_MODULE
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 12.52.0-0 10/28/2024
RIP: 0010:constant_test_bit arch/x86/include/asm/bitops.h:206 [inline]
RIP: 0010:arch_test_bit arch/x86/include/asm/bitops.h:238 [inline]
RIP: 0010:_test_bit include/asm-generic/bitops/instrumented-non-atomic.h:142 [inline]
RIP: 0010:PageHead include/linux/page-flags.h:866 [inline]
RIP: 0010:___free_pages+0x3e/0x120 mm/page_alloc.c:5067
Code: <49> f7 06 40 00 00 00 75 05 45 31 ff eb 0c 66 90 4c 89 f0 4c 39 f0
RSP: 0018:ffff8984551978d0 EFLAGS: 00010246
RAX: 0000777f80000001 RBX: 0000000000000000 RCX: ffffffff918aeb98
RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffffebde00000000
RBP: 0000000000000000 R08: ffffebde00000007 R09: 1ffffd7bc0000000
R10: dffffc0000000000 R11: fffff97bc0000001 R12: dffffc0000000000
R13: ffff8983e19751a8 R14: ffffebde00000000 R15: 1ffffd7bc0000000
FS: 0000000000000000(0000) GS:ffff89ee661d3000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffebde00000000 CR3: 000000793ceaa000 CR4: 0000000000350ef0
DR0: 0000000000000000 DR1: 0000000000000b5f DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
sev_free_vcpu+0x413/0x630 arch/x86/kvm/svm/sev.c:3169
svm_vcpu_free+0x13a/0x2a0 arch/x86/kvm/svm/svm.c:1515
kvm_arch_vcpu_destroy+0x6a/0x1d0 arch/x86/kvm/x86.c:12396
kvm_vcpu_destroy virt/kvm/kvm_main.c:470 [inline]
kvm_destroy_vcpus+0xd1/0x300 virt/kvm/kvm_main.c:490
kvm_arch_destroy_vm+0x636/0x820 arch/x86/kvm/x86.c:12895
kvm_put_kvm+0xb8e/0xfb0 virt/kvm/kvm_main.c:1310
kvm_vm_release+0x48/0x60 virt/kvm/kvm_main.c:1369
__fput+0x3e4/0x9e0 fs/file_table.c:465
task_work_run+0x1a9/0x220 kernel/task_work.c:227
exit_task_work include/linux/task_work.h:40 [inline]
do_exit+0x7f0/0x25b0 kernel/exit.c:953
do_group_exit+0x203/0x2d0 kernel/exit.c:1102
get_signal+0x1357/0x1480 kernel/signal.c:3034
arch_do_signal_or_restart+0x40/0x690 arch/x86/kernel/signal.c:337
exit_to_user_mode_loop kernel/entry/common.c:111 [inline]
exit_to_user_mode_prepare include/linux/entry-common.h:329 [inline]
__syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline]
syscall_exit_to_user_mode+0x67/0xb0 kernel/entry/common.c:218
do_syscall_64+0x7c/0x150 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f87a898e969
</TASK>
Modules linked in: gq(O)
gsmi: Log Shutdown Reason 0x03
CR2: ffffebde00000000
---[ end trace 0000000000000000 ]---
Deliberately don't check for a NULL VMSA when freeing the vCPU, as crashing
the host is likely desirable due to the VMSA being consumed by hardware.
E.g. if KVM manages to allow VMRUN on the vCPU, hardware may read/write a
bogus VMSA page. Accessing P
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
md/md-bitmap: fix GPF in bitmap_get_stats()
The commit message of commit 6ec1f0239485 ("md/md-bitmap: fix stats
collection for external bitmaps") states:
Remove the external bitmap check as the statistics should be
available regardless of bitmap storage location.
Return -EINVAL only for invalid bitmap with no storage (neither in
superblock nor in external file).
But, the code does not adhere to the above, as it does only check for
a valid super-block for "internal" bitmaps. Hence, we observe:
Oops: GPF, probably for non-canonical address 0x1cd66f1f40000028
RIP: 0010:bitmap_get_stats+0x45/0xd0
Call Trace:
seq_read_iter+0x2b9/0x46a
seq_read+0x12f/0x180
proc_reg_read+0x57/0xb0
vfs_read+0xf6/0x380
ksys_read+0x6d/0xf0
do_syscall_64+0x8c/0x1b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
We fix this by checking the existence of a super-block for both the
internal and external case. |