| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix link down processing to address NULL pointer dereference
If an FC link down transition while PLOGIs are outstanding to fabric well
known addresses, outstanding ABTS requests may result in a NULL pointer
dereference. Driver unload requests may hang with repeated "2878" log
messages.
The Link down processing results in ABTS requests for outstanding ELS
requests. The Abort WQEs are sent for the ELSs before the driver had set
the link state to down. Thus the driver is sending the Abort with the
expectation that an ABTS will be sent on the wire. The Abort request is
stalled waiting for the link to come up. In some conditions the driver may
auto-complete the ELSs thus if the link does come up, the Abort completions
may reference an invalid structure.
Fix by ensuring that Abort set the flag to avoid link traffic if issued due
to conditions where the link failed. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: core: Fix scsi_mode_sense() buffer length handling
Several problems exist with scsi_mode_sense() buffer length handling:
1) The allocation length field of the MODE SENSE(10) command is 16-bits,
occupying bytes 7 and 8 of the CDB. With this command, access to mode
pages larger than 255 bytes is thus possible. However, the CDB
allocation length field is set by assigning len to byte 8 only, thus
truncating buffer length larger than 255.
2) If scsi_mode_sense() is called with len smaller than 8 with
sdev->use_10_for_ms set, or smaller than 4 otherwise, the buffer length
is increased to 8 and 4 respectively, and the buffer is zero filled
with these increased values, thus corrupting the memory following the
buffer.
Fix these 2 problems by using put_unaligned_be16() to set the allocation
length field of MODE SENSE(10) CDB and by returning an error when len is
too small.
Furthermore, if len is larger than 255B, always try MODE SENSE(10) first,
even if the device driver did not set sdev->use_10_for_ms. In case of
invalid opcode error for MODE SENSE(10), access to mode pages larger than
255 bytes are not retried using MODE SENSE(6). To avoid buffer length
overflows for the MODE_SENSE(10) case, check that len is smaller than 65535
bytes.
While at it, also fix the folowing:
* Use get_unaligned_be16() to retrieve the mode data length and block
descriptor length fields of the mode sense reply header instead of using
an open coded calculation.
* Fix the kdoc dbd argument explanation: the DBD bit stands for Disable
Block Descriptor, which is the opposite of what the dbd argument
description was. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: usbfs: Don't WARN about excessively large memory allocations
Syzbot found that the kernel generates a WARNing if the user tries to
submit a bulk transfer through usbfs with a buffer that is way too
large. This isn't a bug in the kernel; it's merely an invalid request
from the user and the usbfs code does handle it correctly.
In theory the same thing can happen with async transfers, or with the
packet descriptor table for isochronous transfers.
To prevent the MM subsystem from complaining about these bad
allocation requests, add the __GFP_NOWARN flag to the kmalloc calls
for these buffers. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: rp2: use 'request_firmware' instead of 'request_firmware_nowait'
In 'rp2_probe', the driver registers 'rp2_uart_interrupt' then calls
'rp2_fw_cb' through 'request_firmware_nowait'. In 'rp2_fw_cb', if the
firmware don't exists, function just return without initializing ports
of 'rp2_card'. But now the interrupt handler function has been
registered, and when an interrupt comes, 'rp2_uart_interrupt' may access
those ports then causing NULL pointer dereference or other bugs.
Because the driver does some initialization work in 'rp2_fw_cb', in
order to make the driver ready to handle interrupts, 'request_firmware'
should be used instead of asynchronous 'request_firmware_nowait'.
This report reveals it:
INFO: trying to register non-static key.
the code is fine but needs lockdep annotation.
turning off the locking correctness validator.
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 4.19.177-gdba4159c14ef-dirty #45
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-
gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0xec/0x156 lib/dump_stack.c:118
assign_lock_key kernel/locking/lockdep.c:727 [inline]
register_lock_class+0x14e5/0x1ba0 kernel/locking/lockdep.c:753
__lock_acquire+0x187/0x3750 kernel/locking/lockdep.c:3303
lock_acquire+0x124/0x340 kernel/locking/lockdep.c:3907
__raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline]
_raw_spin_lock+0x32/0x50 kernel/locking/spinlock.c:144
spin_lock include/linux/spinlock.h:329 [inline]
rp2_ch_interrupt drivers/tty/serial/rp2.c:466 [inline]
rp2_asic_interrupt.isra.9+0x15d/0x990 drivers/tty/serial/rp2.c:493
rp2_uart_interrupt+0x49/0xe0 drivers/tty/serial/rp2.c:504
__handle_irq_event_percpu+0xfb/0x770 kernel/irq/handle.c:149
handle_irq_event_percpu+0x79/0x150 kernel/irq/handle.c:189
handle_irq_event+0xac/0x140 kernel/irq/handle.c:206
handle_fasteoi_irq+0x232/0x5c0 kernel/irq/chip.c:725
generic_handle_irq_desc include/linux/irqdesc.h:155 [inline]
handle_irq+0x230/0x3a0 arch/x86/kernel/irq_64.c:87
do_IRQ+0xa7/0x1e0 arch/x86/kernel/irq.c:247
common_interrupt+0xf/0xf arch/x86/entry/entry_64.S:670
</IRQ>
RIP: 0010:native_safe_halt+0x28/0x30 arch/x86/include/asm/irqflags.h:61
Code: 00 00 55 be 04 00 00 00 48 c7 c7 00 c2 2f 8c 48 89 e5 e8 fb 31 e7 f8
8b 05 75 af 8d 03 85 c0 7e 07 0f 00 2d 8a 61 65 00 fb f4 <5d> c3 90 90 90
90 90 90 0f 1f 44 00 00 55 48 89 e5 41 57 41 56 41
RSP: 0018:ffff88806b71fcc8 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffde
RAX: 0000000000000000 RBX: ffffffff8bde7e48 RCX: ffffffff88a21285
RDX: 0000000000000000 RSI: 0000000000000004 RDI: ffffffff8c2fc200
RBP: ffff88806b71fcc8 R08: fffffbfff185f840 R09: fffffbfff185f840
R10: 0000000000000001 R11: fffffbfff185f840 R12: 0000000000000002
R13: ffffffff8bea18a0 R14: 0000000000000000 R15: 0000000000000000
arch_safe_halt arch/x86/include/asm/paravirt.h:94 [inline]
default_idle+0x6f/0x360 arch/x86/kernel/process.c:557
arch_cpu_idle+0xf/0x20 arch/x86/kernel/process.c:548
default_idle_call+0x3b/0x60 kernel/sched/idle.c:93
cpuidle_idle_call kernel/sched/idle.c:153 [inline]
do_idle+0x2ab/0x3c0 kernel/sched/idle.c:263
cpu_startup_entry+0xcb/0xe0 kernel/sched/idle.c:369
start_secondary+0x3b8/0x4e0 arch/x86/kernel/smpboot.c:271
secondary_startup_64+0xa4/0xb0 arch/x86/kernel/head_64.S:243
BUG: unable to handle kernel NULL pointer dereference at 0000000000000010
PGD 8000000056d27067 P4D 8000000056d27067 PUD 56d28067 PMD 0
Oops: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 4.19.177-gdba4159c14ef-dirty #45
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-
gc9ba5276e321-prebuilt.qemu.org 04/01/2014
RIP: 0010:readl arch/x86/include/asm/io.h:59 [inline]
RIP: 0010:rp2_ch_interrupt drivers/tty/serial/rp2.c:472 [inline]
RIP: 0010:rp2_asic_interrupt.isra.9+0x181/0x990 drivers/tty/serial/rp2.c:
493
Co
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: fujitsu: fix potential null-ptr-deref
In fmvj18x_get_hwinfo(), if ioremap fails there will be NULL pointer
deref. To fix this, check the return value of ioremap and return -1
to the caller in case of failure. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: do not BUG_ON in link_to_fixup_dir
While doing error injection testing I got the following panic
kernel BUG at fs/btrfs/tree-log.c:1862!
invalid opcode: 0000 [#1] SMP NOPTI
CPU: 1 PID: 7836 Comm: mount Not tainted 5.13.0-rc1+ #305
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
RIP: 0010:link_to_fixup_dir+0xd5/0xe0
RSP: 0018:ffffb5800180fa30 EFLAGS: 00010216
RAX: fffffffffffffffb RBX: 00000000fffffffb RCX: ffff8f595287faf0
RDX: ffffb5800180fa37 RSI: ffff8f5954978800 RDI: 0000000000000000
RBP: ffff8f5953af9450 R08: 0000000000000019 R09: 0000000000000001
R10: 000151f408682970 R11: 0000000120021001 R12: ffff8f5954978800
R13: ffff8f595287faf0 R14: ffff8f5953c77dd0 R15: 0000000000000065
FS: 00007fc5284c8c40(0000) GS:ffff8f59bbd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fc5287f47c0 CR3: 000000011275e002 CR4: 0000000000370ee0
Call Trace:
replay_one_buffer+0x409/0x470
? btree_read_extent_buffer_pages+0xd0/0x110
walk_up_log_tree+0x157/0x1e0
walk_log_tree+0xa6/0x1d0
btrfs_recover_log_trees+0x1da/0x360
? replay_one_extent+0x7b0/0x7b0
open_ctree+0x1486/0x1720
btrfs_mount_root.cold+0x12/0xea
? __kmalloc_track_caller+0x12f/0x240
legacy_get_tree+0x24/0x40
vfs_get_tree+0x22/0xb0
vfs_kern_mount.part.0+0x71/0xb0
btrfs_mount+0x10d/0x380
? vfs_parse_fs_string+0x4d/0x90
legacy_get_tree+0x24/0x40
vfs_get_tree+0x22/0xb0
path_mount+0x433/0xa10
__x64_sys_mount+0xe3/0x120
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
We can get -EIO or any number of legitimate errors from
btrfs_search_slot(), panicing here is not the appropriate response. The
error path for this code handles errors properly, simply return the
error. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix bug on in ext4_es_cache_extent as ext4_split_extent_at failed
We got follow bug_on when run fsstress with injecting IO fault:
[130747.323114] kernel BUG at fs/ext4/extents_status.c:762!
[130747.323117] Internal error: Oops - BUG: 0 [#1] SMP
......
[130747.334329] Call trace:
[130747.334553] ext4_es_cache_extent+0x150/0x168 [ext4]
[130747.334975] ext4_cache_extents+0x64/0xe8 [ext4]
[130747.335368] ext4_find_extent+0x300/0x330 [ext4]
[130747.335759] ext4_ext_map_blocks+0x74/0x1178 [ext4]
[130747.336179] ext4_map_blocks+0x2f4/0x5f0 [ext4]
[130747.336567] ext4_mpage_readpages+0x4a8/0x7a8 [ext4]
[130747.336995] ext4_readpage+0x54/0x100 [ext4]
[130747.337359] generic_file_buffered_read+0x410/0xae8
[130747.337767] generic_file_read_iter+0x114/0x190
[130747.338152] ext4_file_read_iter+0x5c/0x140 [ext4]
[130747.338556] __vfs_read+0x11c/0x188
[130747.338851] vfs_read+0x94/0x150
[130747.339110] ksys_read+0x74/0xf0
This patch's modification is according to Jan Kara's suggestion in:
https://patchwork.ozlabs.org/project/linux-ext4/patch/20210428085158.3728201-1-yebin10@huawei.com/
"I see. Now I understand your patch. Honestly, seeing how fragile is trying
to fix extent tree after split has failed in the middle, I would probably
go even further and make sure we fix the tree properly in case of ENOSPC
and EDQUOT (those are easily user triggerable). Anything else indicates a
HW problem or fs corruption so I'd rather leave the extent tree as is and
don't try to fix it (which also means we will not create overlapping
extents)." |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix memory leak in ext4_mb_init_backend on error path.
Fix a memory leak discovered by syzbot when a file system is corrupted
with an illegally large s_log_groups_per_flex. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix data corruption by fallocate
When fallocate punches holes out of inode size, if original isize is in
the middle of last cluster, then the part from isize to the end of the
cluster will be zeroed with buffer write, at that time isize is not yet
updated to match the new size, if writeback is kicked in, it will invoke
ocfs2_writepage()->block_write_full_page() where the pages out of inode
size will be dropped. That will cause file corruption. Fix this by
zero out eof blocks when extending the inode size.
Running the following command with qemu-image 4.2.1 can get a corrupted
coverted image file easily.
qemu-img convert -p -t none -T none -f qcow2 $qcow_image \
-O qcow2 -o compat=1.1 $qcow_image.conv
The usage of fallocate in qemu is like this, it first punches holes out
of inode size, then extend the inode size.
fallocate(11, FALLOC_FL_KEEP_SIZE|FALLOC_FL_PUNCH_HOLE, 2276196352, 65536) = 0
fallocate(11, 0, 2276196352, 65536) = 0
v1: https://www.spinics.net/lists/linux-fsdevel/msg193999.html
v2: https://lore.kernel.org/linux-fsdevel/20210525093034.GB4112@quack2.suse.cz/T/ |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: abort in rename_exchange if we fail to insert the second ref
Error injection stress uncovered a problem where we'd leave a dangling
inode ref if we failed during a rename_exchange. This happens because
we insert the inode ref for one side of the rename, and then for the
other side. If this second inode ref insert fails we'll leave the first
one dangling and leave a corrupt file system behind. Fix this by
aborting if we did the insert for the first inode ref. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: mediatek: fix global-out-of-bounds issue
When eint virtual eint number is greater than gpio number,
it maybe produce 'desc[eint_n]' size globle-out-of-bounds issue. |
| In the Linux kernel, the following vulnerability has been resolved:
tun: avoid double free in tun_free_netdev
Avoid double free in tun_free_netdev() by moving the
dev->tstats and tun->security allocs to a new ndo_init routine
(tun_net_init()) that will be called by register_netdevice().
ndo_init is paired with the desctructor (tun_free_netdev()),
so if there's an error in register_netdevice() the destructor
will handle the frees.
BUG: KASAN: double-free or invalid-free in selinux_tun_dev_free_security+0x1a/0x20 security/selinux/hooks.c:5605
CPU: 0 PID: 25750 Comm: syz-executor416 Not tainted 5.16.0-rc2-syzk #1
Hardware name: Red Hat KVM, BIOS
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:106
print_address_description.constprop.9+0x28/0x160 mm/kasan/report.c:247
kasan_report_invalid_free+0x55/0x80 mm/kasan/report.c:372
____kasan_slab_free mm/kasan/common.c:346 [inline]
__kasan_slab_free+0x107/0x120 mm/kasan/common.c:374
kasan_slab_free include/linux/kasan.h:235 [inline]
slab_free_hook mm/slub.c:1723 [inline]
slab_free_freelist_hook mm/slub.c:1749 [inline]
slab_free mm/slub.c:3513 [inline]
kfree+0xac/0x2d0 mm/slub.c:4561
selinux_tun_dev_free_security+0x1a/0x20 security/selinux/hooks.c:5605
security_tun_dev_free_security+0x4f/0x90 security/security.c:2342
tun_free_netdev+0xe6/0x150 drivers/net/tun.c:2215
netdev_run_todo+0x4df/0x840 net/core/dev.c:10627
rtnl_unlock+0x13/0x20 net/core/rtnetlink.c:112
__tun_chr_ioctl+0x80c/0x2870 drivers/net/tun.c:3302
tun_chr_ioctl+0x2f/0x40 drivers/net/tun.c:3311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Clear stale IIR value on instruction access rights trap
When a trap 7 (Instruction access rights) occurs, this means the CPU
couldn't execute an instruction due to missing execute permissions on
the memory region. In this case it seems the CPU didn't even fetched
the instruction from memory and thus did not store it in the cr19 (IIR)
register before calling the trap handler. So, the trap handler will find
some random old stale value in cr19.
This patch simply overwrites the stale IIR value with a constant magic
"bad food" value (0xbaadf00d), in the hope people don't start to try to
understand the various random IIR values in trap 7 dumps. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: intel-sdw-acpi: harden detection of controller
The existing code currently sets a pointer to an ACPI handle before
checking that it's actually a SoundWire controller. This can lead to
issues where the graph walk continues and eventually fails, but the
pointer was set already.
This patch changes the logic so that the information provided to
the caller is set when a controller is found. |
| In the Linux kernel, the following vulnerability has been resolved:
isdn: cpai: check ctr->cnr to avoid array index out of bound
The cmtp_add_connection() would add a cmtp session to a controller
and run a kernel thread to process cmtp.
__module_get(THIS_MODULE);
session->task = kthread_run(cmtp_session, session, "kcmtpd_ctr_%d",
session->num);
During this process, the kernel thread would call detach_capi_ctr()
to detach a register controller. if the controller
was not attached yet, detach_capi_ctr() would
trigger an array-index-out-bounds bug.
[ 46.866069][ T6479] UBSAN: array-index-out-of-bounds in
drivers/isdn/capi/kcapi.c:483:21
[ 46.867196][ T6479] index -1 is out of range for type 'capi_ctr *[32]'
[ 46.867982][ T6479] CPU: 1 PID: 6479 Comm: kcmtpd_ctr_0 Not tainted
5.15.0-rc2+ #8
[ 46.869002][ T6479] Hardware name: QEMU Standard PC (i440FX + PIIX,
1996), BIOS 1.14.0-2 04/01/2014
[ 46.870107][ T6479] Call Trace:
[ 46.870473][ T6479] dump_stack_lvl+0x57/0x7d
[ 46.870974][ T6479] ubsan_epilogue+0x5/0x40
[ 46.871458][ T6479] __ubsan_handle_out_of_bounds.cold+0x43/0x48
[ 46.872135][ T6479] detach_capi_ctr+0x64/0xc0
[ 46.872639][ T6479] cmtp_session+0x5c8/0x5d0
[ 46.873131][ T6479] ? __init_waitqueue_head+0x60/0x60
[ 46.873712][ T6479] ? cmtp_add_msgpart+0x120/0x120
[ 46.874256][ T6479] kthread+0x147/0x170
[ 46.874709][ T6479] ? set_kthread_struct+0x40/0x40
[ 46.875248][ T6479] ret_from_fork+0x1f/0x30
[ 46.875773][ T6479] |
| In the Linux kernel, the following vulnerability has been resolved:
xenbus: Use kref to track req lifetime
Marek reported seeing a NULL pointer fault in the xenbus_thread
callstack:
BUG: kernel NULL pointer dereference, address: 0000000000000000
RIP: e030:__wake_up_common+0x4c/0x180
Call Trace:
<TASK>
__wake_up_common_lock+0x82/0xd0
process_msg+0x18e/0x2f0
xenbus_thread+0x165/0x1c0
process_msg+0x18e is req->cb(req). req->cb is set to xs_wake_up(), a
thin wrapper around wake_up(), or xenbus_dev_queue_reply(). It seems
like it was xs_wake_up() in this case.
It seems like req may have woken up the xs_wait_for_reply(), which
kfree()ed the req. When xenbus_thread resumes, it faults on the zero-ed
data.
Linux Device Drivers 2nd edition states:
"Normally, a wake_up call can cause an immediate reschedule to happen,
meaning that other processes might run before wake_up returns."
... which would match the behaviour observed.
Change to keeping two krefs on each request. One for the caller, and
one for xenbus_thread. Each will kref_put() when finished, and the last
will free it.
This use of kref matches the description in
Documentation/core-api/kref.rst |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Add job to pending list if the reset was skipped
When a CL/CSD job times out, we check if the GPU has made any progress
since the last timeout. If so, instead of resetting the hardware, we skip
the reset and let the timer get rearmed. This gives long-running jobs a
chance to complete.
However, when `timedout_job()` is called, the job in question is removed
from the pending list, which means it won't be automatically freed through
`free_job()`. Consequently, when we skip the reset and keep the job
running, the job won't be freed when it finally completes.
This situation leads to a memory leak, as exposed in [1] and [2].
Similarly to commit 704d3d60fec4 ("drm/etnaviv: don't block scheduler when
GPU is still active"), this patch ensures the job is put back on the
pending list when extending the timeout. |
| In the Linux kernel, the following vulnerability has been resolved:
sch_htb: make htb_deactivate() idempotent
Alan reported a NULL pointer dereference in htb_next_rb_node()
after we made htb_qlen_notify() idempotent.
It turns out in the following case it introduced some regression:
htb_dequeue_tree():
|-> fq_codel_dequeue()
|-> qdisc_tree_reduce_backlog()
|-> htb_qlen_notify()
|-> htb_deactivate()
|-> htb_next_rb_node()
|-> htb_deactivate()
For htb_next_rb_node(), after calling the 1st htb_deactivate(), the
clprio[prio]->ptr could be already set to NULL, which means
htb_next_rb_node() is vulnerable here.
For htb_deactivate(), although we checked qlen before calling it, in
case of qlen==0 after qdisc_tree_reduce_backlog(), we may call it again
which triggers the warning inside.
To fix the issues here, we need to:
1) Make htb_deactivate() idempotent, that is, simply return if we
already call it before.
2) Make htb_next_rb_node() safe against ptr==NULL.
Many thanks to Alan for testing and for the reproducer. |
| In the Linux kernel, the following vulnerability has been resolved:
can: bcm: add missing rcu read protection for procfs content
When the procfs content is generated for a bcm_op which is in the process
to be removed the procfs output might show unreliable data (UAF).
As the removal of bcm_op's is already implemented with rcu handling this
patch adds the missing rcu_read_lock() and makes sure the list entries
are properly removed under rcu protection. |
| In the Linux kernel, the following vulnerability has been resolved:
can: bcm: add locking for bcm_op runtime updates
The CAN broadcast manager (CAN BCM) can send a sequence of CAN frames via
hrtimer. The content and also the length of the sequence can be changed
resp reduced at runtime where the 'currframe' counter is then set to zero.
Although this appeared to be a safe operation the updates of 'currframe'
can be triggered from user space and hrtimer context in bcm_can_tx().
Anderson Nascimento created a proof of concept that triggered a KASAN
slab-out-of-bounds read access which can be prevented with a spin_lock_bh.
At the rework of bcm_can_tx() the 'count' variable has been moved into
the protected section as this variable can be modified from both contexts
too. |