| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| EGroupware before 23.1.20240624 mishandles an ORDER BY clause. This leads to json.php?menuaction=EGroupware\Api\Etemplate\Widget\Nextmatch::ajax_get_rows sort.id SQL injection by authenticated users for Address Book or InfoLog sorting. |
| In the Linux kernel, the following vulnerability has been resolved:
of: check previous kernel's ima-kexec-buffer against memory bounds
Presently ima_get_kexec_buffer() doesn't check if the previous kernel's
ima-kexec-buffer lies outside the addressable memory range. This can result
in a kernel panic if the new kernel is booted with 'mem=X' arg and the
ima-kexec-buffer was allocated beyond that range by the previous kernel.
The panic is usually of the form below:
$ sudo kexec --initrd initrd vmlinux --append='mem=16G'
<snip>
BUG: Unable to handle kernel data access on read at 0xc000c01fff7f0000
Faulting instruction address: 0xc000000000837974
Oops: Kernel access of bad area, sig: 11 [#1]
<snip>
NIP [c000000000837974] ima_restore_measurement_list+0x94/0x6c0
LR [c00000000083b55c] ima_load_kexec_buffer+0xac/0x160
Call Trace:
[c00000000371fa80] [c00000000083b55c] ima_load_kexec_buffer+0xac/0x160
[c00000000371fb00] [c0000000020512c4] ima_init+0x80/0x108
[c00000000371fb70] [c0000000020514dc] init_ima+0x4c/0x120
[c00000000371fbf0] [c000000000012240] do_one_initcall+0x60/0x2c0
[c00000000371fcc0] [c000000002004ad0] kernel_init_freeable+0x344/0x3ec
[c00000000371fda0] [c0000000000128a4] kernel_init+0x34/0x1b0
[c00000000371fe10] [c00000000000ce64] ret_from_kernel_thread+0x5c/0x64
Instruction dump:
f92100b8 f92100c0 90e10090 910100a0 4182050c 282a0017 3bc00000 40810330
7c0802a6 fb610198 7c9b2378 f80101d0 <a1240000> 2c090001 40820614 e9240010
---[ end trace 0000000000000000 ]---
Fix this issue by checking returned PFN range of previous kernel's
ima-kexec-buffer with page_is_ram() to ensure correct memory bounds. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/memmap: cast nr_pages to size_t before shifting
If the allocated size exceeds UINT_MAX, then it's necessary to cast
the mr->nr_pages value to size_t to prevent it from overflowing. In
practice this isn't much of a concern as the required memory size will
have been validated upfront, and accounted to the user. And > 4GB sizes
will be necessary to make the lack of a cast a problem, which greatly
exceeds normal user locked_vm settings that are generally in the kb to
mb range. However, if root is used, then accounting isn't done, and
then it's possible to hit this issue. |
| This issue was addressed by removing the vulnerable code. This issue is fixed in tvOS 18.4.1, visionOS 2.4.1, iOS iOS 18.4.1 and iPadOS 18.4.1, macOS Sequoia 15.4.1. An attacker with arbitrary read and write capability may be able to bypass Pointer Authentication. Apple is aware of a report that this issue may have been exploited in an extremely sophisticated attack against specific targeted individuals on iOS. |
| An issue in Gevent before version 23.9.0 allows a remote attacker to escalate privileges via a crafted script to the WSGIServer component. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: don't hold ni_lock when calling truncate_setsize()
syzbot is reporting hung task at do_user_addr_fault() [1], for there is
a silent deadlock between PG_locked bit and ni_lock lock.
Since filemap_update_page() calls filemap_read_folio() after calling
folio_trylock() which will set PG_locked bit, ntfs_truncate() must not
call truncate_setsize() which will wait for PG_locked bit to be cleared
when holding ni_lock lock. |
| In the Linux kernel, the following vulnerability has been resolved:
rcu/nocb: Fix possible invalid rdp's->nocb_cb_kthread pointer access
In the preparation stage of CPU online, if the corresponding
the rdp's->nocb_cb_kthread does not exist, will be created,
there is a situation where the rdp's rcuop kthreads creation fails,
and then de-offload this CPU's rdp, does not assign this CPU's
rdp->nocb_cb_kthread pointer, but this rdp's->nocb_gp_rdp and
rdp's->rdp_gp->nocb_gp_kthread is still valid.
This will cause the subsequent re-offload operation of this offline
CPU, which will pass the conditional check and the kthread_unpark()
will access invalid rdp's->nocb_cb_kthread pointer.
This commit therefore use rdp's->nocb_gp_kthread instead of
rdp_gp's->nocb_gp_kthread for safety check. |
| In the Linux kernel, the following vulnerability has been resolved:
userfaultfd: fix a crash in UFFDIO_MOVE when PMD is a migration entry
When UFFDIO_MOVE encounters a migration PMD entry, it proceeds with
obtaining a folio and accessing it even though the entry is swp_entry_t.
Add the missing check and let split_huge_pmd() handle migration entries.
While at it also remove unnecessary folio check.
[surenb@google.com: remove extra folio check, per David] |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Prevent ALIGN() overflow
When allocating IOVA the candidate range gets aligned to the target
alignment. If the range is close to ULONG_MAX then the ALIGN() can
wrap resulting in a corrupted iova.
Open code the ALIGN() using get_add_overflow() to prevent this.
This simplifies the checks as we don't need to check for length earlier
either.
Consolidate the two copies of this code under a single helper.
This bug would allow userspace to create a mapping that overlaps with some
other mapping or a reserved range. |
| In the Linux kernel, the following vulnerability has been resolved:
net: lapbether: ignore ops-locked netdevs
Syzkaller managed to trigger lock dependency in xsk_notify via
register_netdevice. As discussed in [0], using register_netdevice
in the notifiers is problematic so skip adding lapbeth for ops-locked
devices.
xsk_notifier+0xa4/0x280 net/xdp/xsk.c:1645
notifier_call_chain+0xbc/0x410 kernel/notifier.c:85
call_netdevice_notifiers_info+0xbe/0x140 net/core/dev.c:2230
call_netdevice_notifiers_extack net/core/dev.c:2268 [inline]
call_netdevice_notifiers net/core/dev.c:2282 [inline]
unregister_netdevice_many_notify+0xf9d/0x2700 net/core/dev.c:12077
unregister_netdevice_many net/core/dev.c:12140 [inline]
unregister_netdevice_queue+0x305/0x3f0 net/core/dev.c:11984
register_netdevice+0x18f1/0x2270 net/core/dev.c:11149
lapbeth_new_device drivers/net/wan/lapbether.c:420 [inline]
lapbeth_device_event+0x5b1/0xbe0 drivers/net/wan/lapbether.c:462
notifier_call_chain+0xbc/0x410 kernel/notifier.c:85
call_netdevice_notifiers_info+0xbe/0x140 net/core/dev.c:2230
call_netdevice_notifiers_extack net/core/dev.c:2268 [inline]
call_netdevice_notifiers net/core/dev.c:2282 [inline]
__dev_notify_flags+0x12c/0x2e0 net/core/dev.c:9497
netif_change_flags+0x108/0x160 net/core/dev.c:9526
dev_change_flags+0xba/0x250 net/core/dev_api.c:68
devinet_ioctl+0x11d5/0x1f50 net/ipv4/devinet.c:1200
inet_ioctl+0x3a7/0x3f0 net/ipv4/af_inet.c:1001
0: https://lore.kernel.org/netdev/20250625140357.6203d0af@kernel.org/ |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: Duplicate SPI Handling
The issue originates when Strongswan initiates an XFRM_MSG_ALLOCSPI
Netlink message, which triggers the kernel function xfrm_alloc_spi().
This function is expected to ensure uniqueness of the Security Parameter
Index (SPI) for inbound Security Associations (SAs). However, it can
return success even when the requested SPI is already in use, leading
to duplicate SPIs assigned to multiple inbound SAs, differentiated
only by their destination addresses.
This behavior causes inconsistencies during SPI lookups for inbound packets.
Since the lookup may return an arbitrary SA among those with the same SPI,
packet processing can fail, resulting in packet drops.
According to RFC 4301 section 4.4.2 , for inbound processing a unicast SA
is uniquely identified by the SPI and optionally protocol.
Reproducing the Issue Reliably:
To consistently reproduce the problem, restrict the available SPI range in
charon.conf : spi_min = 0x10000000 spi_max = 0x10000002
This limits the system to only 2 usable SPI values.
Next, create more than 2 Child SA. each using unique pair of src/dst address.
As soon as the 3rd Child SA is initiated, it will be assigned a duplicate
SPI, since the SPI pool is already exhausted.
With a narrow SPI range, the issue is consistently reproducible.
With a broader/default range, it becomes rare and unpredictable.
Current implementation:
xfrm_spi_hash() lookup function computes hash using daddr, proto, and family.
So if two SAs have the same SPI but different destination addresses, then
they will:
a. Hash into different buckets
b. Be stored in different linked lists (byspi + h)
c. Not be seen in the same hlist_for_each_entry_rcu() iteration.
As a result, the lookup will result in NULL and kernel allows that Duplicate SPI
Proposed Change:
xfrm_state_lookup_spi_proto() does a truly global search - across all states,
regardless of hash bucket and matches SPI and proto. |
| In the Linux kernel, the following vulnerability has been resolved:
lib/crypto: arm/poly1305: Fix register corruption in no-SIMD contexts
Restore the SIMD usability check that was removed by commit 773426f4771b
("crypto: arm/poly1305 - Add block-only interface").
This safety check is cheap and is well worth eliminating a footgun.
While the Poly1305 functions should not be called when SIMD registers
are unusable, if they are anyway, they should just do the right thing
instead of corrupting random tasks' registers and/or computing incorrect
MACs. Fixing this is also needed for poly1305_kunit to pass.
Just use may_use_simd() instead of the original crypto_simd_usable(),
since poly1305_kunit won't rely on crypto_simd_disabled_for_test. |
| In the Linux kernel, the following vulnerability has been resolved:
lib/crypto: arm64/poly1305: Fix register corruption in no-SIMD contexts
Restore the SIMD usability check that was removed by commit a59e5468a921
("crypto: arm64/poly1305 - Add block-only interface").
This safety check is cheap and is well worth eliminating a footgun.
While the Poly1305 functions should not be called when SIMD registers
are unusable, if they are anyway, they should just do the right thing
instead of corrupting random tasks' registers and/or computing incorrect
MACs. Fixing this is also needed for poly1305_kunit to pass.
Just use may_use_simd() instead of the original crypto_simd_usable(),
since poly1305_kunit won't rely on crypto_simd_disabled_for_test. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/af_unix: defer registered files gc to io_uring release
Instead of putting io_uring's registered files in unix_gc() we want it
to be done by io_uring itself. The trick here is to consider io_uring
registered files for cycle detection but not actually putting them down.
Because io_uring can't register other ring instances, this will remove
all refs to the ring file triggering the ->release path and clean up
with io_ring_ctx_free().
[axboe: add kerneldoc comment to skb, fold in skb leak fix] |
| CWE-20 Improper Input Validation |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: Clear affinity hint before calling ath11k_pcic_free_irq() in error path
If a shared IRQ is used by the driver due to platform limitation, then the
IRQ affinity hint is set right after the allocation of IRQ vectors in
ath11k_pci_alloc_msi(). This does no harm unless one of the functions
requesting the IRQ fails and attempt to free the IRQ. This results in the
below warning:
WARNING: CPU: 7 PID: 349 at kernel/irq/manage.c:1929 free_irq+0x278/0x29c
Call trace:
free_irq+0x278/0x29c
ath11k_pcic_free_irq+0x70/0x10c [ath11k]
ath11k_pci_probe+0x800/0x820 [ath11k_pci]
local_pci_probe+0x40/0xbc
The warning is due to not clearing the affinity hint before freeing the
IRQs.
So to fix this issue, clear the IRQ affinity hint before calling
ath11k_pcic_free_irq() in the error path. The affinity will be cleared once
again further down the error path due to code organization, but that does
no harm.
Tested-on: QCA6390 hw2.0 PCI WLAN.HST.1.0.1-05266-QCAHSTSWPLZ_V2_TO_X86-1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: allow small head cache usage with large MAX_SKB_FRAGS values
Sabrina reported the following splat:
WARNING: CPU: 0 PID: 1 at net/core/dev.c:6935 netif_napi_add_weight_locked+0x8f2/0xba0
Modules linked in:
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.14.0-rc1-net-00092-g011b03359038 #996
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
RIP: 0010:netif_napi_add_weight_locked+0x8f2/0xba0
Code: e8 c3 e6 6a fe 48 83 c4 28 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc c7 44 24 10 ff ff ff ff e9 8f fb ff ff e8 9e e6 6a fe <0f> 0b e9 d3 fe ff ff e8 92 e6 6a fe 48 8b 04 24 be ff ff ff ff 48
RSP: 0000:ffffc9000001fc60 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff88806ce48128 RCX: 1ffff11001664b9e
RDX: ffff888008f00040 RSI: ffffffff8317ca42 RDI: ffff88800b325cb6
RBP: ffff88800b325c40 R08: 0000000000000001 R09: ffffed100167502c
R10: ffff88800b3a8163 R11: 0000000000000000 R12: ffff88800ac1c168
R13: ffff88800ac1c168 R14: ffff88800ac1c168 R15: 0000000000000007
FS: 0000000000000000(0000) GS:ffff88806ce00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff888008201000 CR3: 0000000004c94001 CR4: 0000000000370ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
gro_cells_init+0x1ba/0x270
xfrm_input_init+0x4b/0x2a0
xfrm_init+0x38/0x50
ip_rt_init+0x2d7/0x350
ip_init+0xf/0x20
inet_init+0x406/0x590
do_one_initcall+0x9d/0x2e0
do_initcalls+0x23b/0x280
kernel_init_freeable+0x445/0x490
kernel_init+0x20/0x1d0
ret_from_fork+0x46/0x80
ret_from_fork_asm+0x1a/0x30
</TASK>
irq event stamp: 584330
hardirqs last enabled at (584338): [<ffffffff8168bf87>] __up_console_sem+0x77/0xb0
hardirqs last disabled at (584345): [<ffffffff8168bf6c>] __up_console_sem+0x5c/0xb0
softirqs last enabled at (583242): [<ffffffff833ee96d>] netlink_insert+0x14d/0x470
softirqs last disabled at (583754): [<ffffffff8317c8cd>] netif_napi_add_weight_locked+0x77d/0xba0
on kernel built with MAX_SKB_FRAGS=45, where SKB_WITH_OVERHEAD(1024)
is smaller than GRO_MAX_HEAD.
Such built additionally contains the revert of the single page frag cache
so that napi_get_frags() ends up using the page frag allocator, triggering
the splat.
Note that the underlying issue is independent from the mentioned
revert; address it ensuring that the small head cache will fit either TCP
and GRO allocation and updating napi_alloc_skb() and __netdev_alloc_skb()
to select kmalloc() usage for any allocation fitting such cache. |
| In the Linux kernel, the following vulnerability has been resolved:
cachestat: do not flush stats in recency check
syzbot detects that cachestat() is flushing stats, which can sleep, in its
RCU read section (see [1]). This is done in the workingset_test_recent()
step (which checks if the folio's eviction is recent).
Move the stat flushing step to before the RCU read section of cachestat,
and skip stat flushing during the recency check.
[1]: https://lore.kernel.org/cgroups/000000000000f71227061bdf97e0@google.com/ |
| Adobe Reader and Acrobat 10.x before 10.1.11 and 11.x before 11.0.08 on Windows allow attackers to bypass a sandbox protection mechanism, and consequently execute native code in a privileged context, via unspecified vectors. |
| Insufficient validation of untrusted input in Devtools in Google Chrome prior to 140.0.7339.80 allowed a remote attacker to execute arbitrary code via user action in Devtools. (Chromium security severity: Low) |