Search Results (322828 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68179 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390: Disable ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP As reported by Luiz Capitulino enabling HVO on s390 leads to reproducible crashes. The problem is that kernel page tables are modified without flushing corresponding TLB entries. Even if it looks like the empty flush_tlb_all() implementation on s390 is the problem, it is actually a different problem: on s390 it is not allowed to replace an active/valid page table entry with another valid page table entry without the detour over an invalid entry. A direct replacement may lead to random crashes and/or data corruption. In order to invalidate an entry special instructions have to be used (e.g. ipte or idte). Alternatively there are also special instructions available which allow to replace a valid entry with a different valid entry (e.g. crdte or cspg). Given that the HVO code currently does not provide the hooks to allow for an implementation which is compliant with the s390 architecture requirements, disable ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP again, which is basically a revert of the original patch which enabled it.
CVE-2025-68178 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: fix possible deadlock while configuring policy Following deadlock can be triggered easily by lockdep: WARNING: possible circular locking dependency detected 6.17.0-rc3-00124-ga12c2658ced0 #1665 Not tainted ------------------------------------------------------ check/1334 is trying to acquire lock: ff1100011d9d0678 (&q->sysfs_lock){+.+.}-{4:4}, at: blk_unregister_queue+0x53/0x180 but task is already holding lock: ff1100011d9d00e0 (&q->q_usage_counter(queue)#3){++++}-{0:0}, at: del_gendisk+0xba/0x110 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (&q->q_usage_counter(queue)#3){++++}-{0:0}: blk_queue_enter+0x40b/0x470 blkg_conf_prep+0x7b/0x3c0 tg_set_limit+0x10a/0x3e0 cgroup_file_write+0xc6/0x420 kernfs_fop_write_iter+0x189/0x280 vfs_write+0x256/0x490 ksys_write+0x83/0x190 __x64_sys_write+0x21/0x30 x64_sys_call+0x4608/0x4630 do_syscall_64+0xdb/0x6b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #1 (&q->rq_qos_mutex){+.+.}-{4:4}: __mutex_lock+0xd8/0xf50 mutex_lock_nested+0x2b/0x40 wbt_init+0x17e/0x280 wbt_enable_default+0xe9/0x140 blk_register_queue+0x1da/0x2e0 __add_disk+0x38c/0x5d0 add_disk_fwnode+0x89/0x250 device_add_disk+0x18/0x30 virtblk_probe+0x13a3/0x1800 virtio_dev_probe+0x389/0x610 really_probe+0x136/0x620 __driver_probe_device+0xb3/0x230 driver_probe_device+0x2f/0xe0 __driver_attach+0x158/0x250 bus_for_each_dev+0xa9/0x130 driver_attach+0x26/0x40 bus_add_driver+0x178/0x3d0 driver_register+0x7d/0x1c0 __register_virtio_driver+0x2c/0x60 virtio_blk_init+0x6f/0xe0 do_one_initcall+0x94/0x540 kernel_init_freeable+0x56a/0x7b0 kernel_init+0x2b/0x270 ret_from_fork+0x268/0x4c0 ret_from_fork_asm+0x1a/0x30 -> #0 (&q->sysfs_lock){+.+.}-{4:4}: __lock_acquire+0x1835/0x2940 lock_acquire+0xf9/0x450 __mutex_lock+0xd8/0xf50 mutex_lock_nested+0x2b/0x40 blk_unregister_queue+0x53/0x180 __del_gendisk+0x226/0x690 del_gendisk+0xba/0x110 sd_remove+0x49/0xb0 [sd_mod] device_remove+0x87/0xb0 device_release_driver_internal+0x11e/0x230 device_release_driver+0x1a/0x30 bus_remove_device+0x14d/0x220 device_del+0x1e1/0x5a0 __scsi_remove_device+0x1ff/0x2f0 scsi_remove_device+0x37/0x60 sdev_store_delete+0x77/0x100 dev_attr_store+0x1f/0x40 sysfs_kf_write+0x65/0x90 kernfs_fop_write_iter+0x189/0x280 vfs_write+0x256/0x490 ksys_write+0x83/0x190 __x64_sys_write+0x21/0x30 x64_sys_call+0x4608/0x4630 do_syscall_64+0xdb/0x6b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e other info that might help us debug this: Chain exists of: &q->sysfs_lock --> &q->rq_qos_mutex --> &q->q_usage_counter(queue)#3 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&q->q_usage_counter(queue)#3); lock(&q->rq_qos_mutex); lock(&q->q_usage_counter(queue)#3); lock(&q->sysfs_lock); Root cause is that queue_usage_counter is grabbed with rq_qos_mutex held in blkg_conf_prep(), while queue should be freezed before rq_qos_mutex from other context. The blk_queue_enter() from blkg_conf_prep() is used to protect against policy deactivation, which is already protected with blkcg_mutex, hence convert blk_queue_enter() to blkcg_mutex to fix this problem. Meanwhile, consider that blkcg_mutex is held after queue is freezed from policy deactivation, also convert blkg_alloc() to use GFP_NOIO.
CVE-2025-68177 1 Linux 1 Linux Kernel 2025-12-16 N/A
In the Linux kernel, the following vulnerability has been resolved: cpufreq/longhaul: handle NULL policy in longhaul_exit longhaul_exit() was calling cpufreq_cpu_get(0) without checking for a NULL policy pointer. On some systems, this could lead to a NULL dereference and a kernel warning or panic. This patch adds a check using unlikely() and returns early if the policy is NULL. Bugzilla: #219962
CVE-2025-68176 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: cadence: Check for the existence of cdns_pcie::ops before using it cdns_pcie::ops might not be populated by all the Cadence glue drivers. This is going to be true for the upcoming Sophgo platform which doesn't set the ops. Hence, add a check to prevent NULL pointer dereference. [mani: reworded subject and description]
CVE-2025-68175 1 Linux 1 Linux Kernel 2025-12-16 N/A
In the Linux kernel, the following vulnerability has been resolved: media: nxp: imx8-isi: Fix streaming cleanup on release The current implementation unconditionally calls mxc_isi_video_cleanup_streaming() in mxc_isi_video_release(). This can lead to situations where any release call (like from a simple "v4l2-ctl -l") may release a currently streaming queue when called on such a device. This is reproducible on an i.MX8MP board by streaming from an ISI capture device using gstreamer: gst-launch-1.0 -v v4l2src device=/dev/videoX ! \ video/x-raw,format=GRAY8,width=1280,height=800,framerate=1/120 ! \ fakesink While this stream is running, querying the caps of the same device provokes the error state: v4l2-ctl -l -d /dev/videoX This results in the following trace: [ 155.452152] ------------[ cut here ]------------ [ 155.452163] WARNING: CPU: 0 PID: 1708 at drivers/media/platform/nxp/imx8-isi/imx8-isi-pipe.c:713 mxc_isi_pipe_irq_handler+0x19c/0x1b0 [imx8_isi] [ 157.004248] Modules linked in: cfg80211 rpmsg_ctrl rpmsg_char rpmsg_tty virtio_rpmsg_bus rpmsg_ns rpmsg_core rfkill nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables mcp251x6 [ 157.053499] CPU: 0 UID: 0 PID: 1708 Comm: python3 Not tainted 6.15.4-00114-g1f61ca5cad76 #1 PREEMPT [ 157.064369] Hardware name: imx8mp_board_01 (DT) [ 157.068205] pstate: 400000c5 (nZcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 157.075169] pc : mxc_isi_pipe_irq_handler+0x19c/0x1b0 [imx8_isi] [ 157.081195] lr : mxc_isi_pipe_irq_handler+0x38/0x1b0 [imx8_isi] [ 157.087126] sp : ffff800080003ee0 [ 157.090438] x29: ffff800080003ee0 x28: ffff0000c3688000 x27: 0000000000000000 [ 157.097580] x26: 0000000000000000 x25: ffff0000c1e7ac00 x24: ffff800081b5ad50 [ 157.104723] x23: 00000000000000d1 x22: 0000000000000000 x21: ffff0000c25e4000 [ 157.111866] x20: 0000000060000200 x19: ffff80007a0608d0 x18: 0000000000000000 [ 157.119008] x17: ffff80006a4e3000 x16: ffff800080000000 x15: 0000000000000000 [ 157.126146] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 [ 157.133287] x11: 0000000000000040 x10: ffff0000c01445f0 x9 : ffff80007a053a38 [ 157.140425] x8 : ffff0000c04004b8 x7 : 0000000000000000 x6 : 0000000000000000 [ 157.147567] x5 : ffff0000c0400490 x4 : ffff80006a4e3000 x3 : ffff0000c25e4000 [ 157.154706] x2 : 0000000000000000 x1 : ffff8000825c0014 x0 : 0000000060000200 [ 157.161850] Call trace: [ 157.164296] mxc_isi_pipe_irq_handler+0x19c/0x1b0 [imx8_isi] (P) [ 157.170319] __handle_irq_event_percpu+0x58/0x218 [ 157.175029] handle_irq_event+0x54/0xb8 [ 157.178867] handle_fasteoi_irq+0xac/0x248 [ 157.182968] handle_irq_desc+0x48/0x68 [ 157.186723] generic_handle_domain_irq+0x24/0x38 [ 157.191346] gic_handle_irq+0x54/0x120 [ 157.195098] call_on_irq_stack+0x24/0x30 [ 157.199027] do_interrupt_handler+0x88/0x98 [ 157.203212] el0_interrupt+0x44/0xc0 [ 157.206792] __el0_irq_handler_common+0x18/0x28 [ 157.211328] el0t_64_irq_handler+0x10/0x20 [ 157.215429] el0t_64_irq+0x198/0x1a0 [ 157.219009] ---[ end trace 0000000000000000 ]--- Address this issue by moving the streaming preparation and cleanup to the vb2 .prepare_streaming() and .unprepare_streaming() operations. This also simplifies the driver by allowing direct usage of the vb2_ioctl_streamon() and vb2_ioctl_streamoff() helpers, and removal of the manual cleanup from mxc_isi_video_release().
CVE-2025-68174 1 Linux 1 Linux Kernel 2025-12-16 N/A
In the Linux kernel, the following vulnerability has been resolved: amd/amdkfd: enhance kfd process check in switch partition current switch partition only check if kfd_processes_table is empty. kfd_prcesses_table entry is deleted in kfd_process_notifier_release, but kfd_process tear down is in kfd_process_wq_release. consider two processes: Process A (workqueue) -> kfd_process_wq_release -> Access kfd_node member Process B switch partition -> amdgpu_xcp_pre_partition_switch -> amdgpu_amdkfd_device_fini_sw -> kfd_node tear down. Process A and B may trigger a race as shown in dmesg log. This patch is to resolve the race by adding an atomic kfd_process counter kfd_processes_count, it increment as create kfd process, decrement as finish kfd_process_wq_release. v2: Put kfd_processes_count per kfd_dev, move decrement to kfd_process_destroy_pdds and bug fix. (Philip Yang) [3966658.307702] divide error: 0000 [#1] SMP NOPTI [3966658.350818] i10nm_edac [3966658.356318] CPU: 124 PID: 38435 Comm: kworker/124:0 Kdump: loaded Tainted [3966658.356890] Workqueue: kfd_process_wq kfd_process_wq_release [amdgpu] [3966658.362839] nfit [3966658.366457] RIP: 0010:kfd_get_num_sdma_engines+0x17/0x40 [amdgpu] [3966658.366460] Code: 00 00 e9 ac 81 02 00 66 66 2e 0f 1f 84 00 00 00 00 00 90 0f 1f 44 00 00 48 8b 4f 08 48 8b b7 00 01 00 00 8b 81 58 26 03 00 99 <f7> be b8 01 00 00 80 b9 70 2e 00 00 00 74 0b 83 f8 02 ba 02 00 00 [3966658.380967] x86_pkg_temp_thermal [3966658.391529] RSP: 0018:ffffc900a0edfdd8 EFLAGS: 00010246 [3966658.391531] RAX: 0000000000000008 RBX: ffff8974e593b800 RCX: ffff888645900000 [3966658.391531] RDX: 0000000000000000 RSI: ffff888129154400 RDI: ffff888129151c00 [3966658.391532] RBP: ffff8883ad79d400 R08: 0000000000000000 R09: ffff8890d2750af4 [3966658.391532] R10: 0000000000000018 R11: 0000000000000018 R12: 0000000000000000 [3966658.391533] R13: ffff8883ad79d400 R14: ffffe87ff662ba00 R15: ffff8974e593b800 [3966658.391533] FS: 0000000000000000(0000) GS:ffff88fe7f600000(0000) knlGS:0000000000000000 [3966658.391534] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [3966658.391534] CR2: 0000000000d71000 CR3: 000000dd0e970004 CR4: 0000000002770ee0 [3966658.391535] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [3966658.391535] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 [3966658.391536] PKRU: 55555554 [3966658.391536] Call Trace: [3966658.391674] deallocate_sdma_queue+0x38/0xa0 [amdgpu] [3966658.391762] process_termination_cpsch+0x1ed/0x480 [amdgpu] [3966658.399754] intel_powerclamp [3966658.402831] kfd_process_dequeue_from_all_devices+0x5b/0xc0 [amdgpu] [3966658.402908] kfd_process_wq_release+0x1a/0x1a0 [amdgpu] [3966658.410516] coretemp [3966658.434016] process_one_work+0x1ad/0x380 [3966658.434021] worker_thread+0x49/0x310 [3966658.438963] kvm_intel [3966658.446041] ? process_one_work+0x380/0x380 [3966658.446045] kthread+0x118/0x140 [3966658.446047] ? __kthread_bind_mask+0x60/0x60 [3966658.446050] ret_from_fork+0x1f/0x30 [3966658.446053] Modules linked in: kpatch_20765354(OEK) [3966658.455310] kvm [3966658.464534] mptcp_diag xsk_diag raw_diag unix_diag af_packet_diag netlink_diag udp_diag act_pedit act_mirred act_vlan cls_flower kpatch_21951273(OEK) kpatch_18424469(OEK) kpatch_19749756(OEK) [3966658.473462] idxd_mdev [3966658.482306] kpatch_17971294(OEK) sch_ingress xt_conntrack amdgpu(OE) amdxcp(OE) amddrm_buddy(OE) amd_sched(OE) amdttm(OE) amdkcl(OE) intel_ifs iptable_mangle tcm_loop target_core_pscsi tcp_diag target_core_file inet_diag target_core_iblock target_core_user target_core_mod coldpgs kpatch_18383292(OEK) ip6table_nat ip6table_filter ip6_tables ip_set_hash_ipportip ip_set_hash_ipportnet ip_set_hash_ipport ip_set_bitmap_port xt_comment iptable_nat nf_nat iptable_filter ip_tables ip_set ip_vs_sh ip_vs_wrr ip_vs_rr ip_vs nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 sn_core_odd(OE) i40e overlay binfmt_misc tun bonding(OE) aisqos(OE) aisqo ---truncated---
CVE-2025-68173 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ftrace: Fix softlockup in ftrace_module_enable A soft lockup was observed when loading amdgpu module. If a module has a lot of tracable functions, multiple calls to kallsyms_lookup can spend too much time in RCU critical section and with disabled preemption, causing kernel panic. This is the same issue that was fixed in commit d0b24b4e91fc ("ftrace: Prevent RCU stall on PREEMPT_VOLUNTARY kernels") and commit 42ea22e754ba ("ftrace: Add cond_resched() to ftrace_graph_set_hash()"). Fix it the same way by adding cond_resched() in ftrace_module_enable.
CVE-2025-68172 1 Linux 1 Linux Kernel 2025-12-16 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: aspeed - fix double free caused by devm The clock obtained via devm_clk_get_enabled() is automatically managed by devres and will be disabled and freed on driver detach. Manually calling clk_disable_unprepare() in error path and remove function causes double free. Remove the manual clock cleanup in both aspeed_acry_probe()'s error path and aspeed_acry_remove().
CVE-2025-68171 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Ensure XFD state on signal delivery Sean reported [1] the following splat when running KVM tests: WARNING: CPU: 232 PID: 15391 at xfd_validate_state+0x65/0x70 Call Trace: <TASK> fpu__clear_user_states+0x9c/0x100 arch_do_signal_or_restart+0x142/0x210 exit_to_user_mode_loop+0x55/0x100 do_syscall_64+0x205/0x2c0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Chao further identified [2] a reproducible scenario involving signal delivery: a non-AMX task is preempted by an AMX-enabled task which modifies the XFD MSR. When the non-AMX task resumes and reloads XSTATE with init values, a warning is triggered due to a mismatch between fpstate::xfd and the CPU's current XFD state. fpu__clear_user_states() does not currently re-synchronize the XFD state after such preemption. Invoke xfd_update_state() which detects and corrects the mismatch if there is a dynamic feature. This also benefits the sigreturn path, as fpu__restore_sig() may call fpu__clear_user_states() when the sigframe is inaccessible. [ dhansen: minor changelog munging ]
CVE-2025-68170 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Do not kfree() devres managed rdev Since the allocation of the drivers main structure was changed to devm_drm_dev_alloc() rdev is managed by devres and we shouldn't be calling kfree() on it. This fixes things exploding if the driver probe fails and devres cleans up the rdev after we already free'd it. (cherry picked from commit 16c0681617b8a045773d4d87b6140002fa75b03b)
CVE-2025-68169 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netpoll: Fix deadlock in memory allocation under spinlock Fix a AA deadlock in refill_skbs() where memory allocation while holding skb_pool->lock can trigger a recursive lock acquisition attempt. The deadlock scenario occurs when the system is under severe memory pressure: 1. refill_skbs() acquires skb_pool->lock (spinlock) 2. alloc_skb() is called while holding the lock 3. Memory allocator fails and calls slab_out_of_memory() 4. This triggers printk() for the OOM warning 5. The console output path calls netpoll_send_udp() 6. netpoll_send_udp() attempts to acquire the same skb_pool->lock 7. Deadlock: the lock is already held by the same CPU Call stack: refill_skbs() spin_lock_irqsave(&skb_pool->lock) <- lock acquired __alloc_skb() kmem_cache_alloc_node_noprof() slab_out_of_memory() printk() console_flush_all() netpoll_send_udp() skb_dequeue() spin_lock_irqsave(&skb_pool->lock) <- deadlock attempt This bug was exposed by commit 248f6571fd4c51 ("netpoll: Optimize skb refilling on critical path") which removed refill_skbs() from the critical path (where nested printk was being deferred), letting nested printk being called from inside refill_skbs() Refactor refill_skbs() to never allocate memory while holding the spinlock. Another possible solution to fix this problem is protecting the refill_skbs() from nested printks, basically calling printk_deferred_{enter,exit}() in refill_skbs(), then, any nested pr_warn() would be deferred. I prefer this approach, given I _think_ it might be a good idea to move the alloc_skb() from GFP_ATOMIC to GFP_KERNEL in the future, so, having the alloc_skb() outside of the lock will be necessary step. There is a possible TOCTOU issue when checking for the pool length, and queueing the new allocated skb, but, this is not an issue, given that an extra SKB in the pool is harmless and it will be eventually used.
CVE-2025-68168 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: jfs: fix uninitialized waitqueue in transaction manager The transaction manager initialization in txInit() was not properly initializing TxBlock[0].waitor waitqueue, causing a crash when txEnd(0) is called on read-only filesystems. When a filesystem is mounted read-only, txBegin() returns tid=0 to indicate no transaction. However, txEnd(0) still gets called and tries to access TxBlock[0].waitor via tid_to_tblock(0), but this waitqueue was never initialized because the initialization loop started at index 1 instead of 0. This causes a 'non-static key' lockdep warning and system crash: INFO: trying to register non-static key in txEnd Fix by ensuring all transaction blocks including TxBlock[0] have their waitqueues properly initialized during txInit().
CVE-2025-68167 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gpiolib: fix invalid pointer access in debugfs If the memory allocation in gpiolib_seq_start() fails, the s->private field remains uninitialized and is later dereferenced without checking in gpiolib_seq_stop(). Initialize s->private to NULL before calling kzalloc() and check it before dereferencing it.
CVE-2025-40363 1 Linux 1 Linux Kernel 2025-12-16 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: ipv6: fix field-spanning memcpy warning in AH output Fix field-spanning memcpy warnings in ah6_output() and ah6_output_done() where extension headers are copied to/from IPv6 address fields, triggering fortify-string warnings about writes beyond the 16-byte address fields. memcpy: detected field-spanning write (size 40) of single field "&top_iph->saddr" at net/ipv6/ah6.c:439 (size 16) WARNING: CPU: 0 PID: 8838 at net/ipv6/ah6.c:439 ah6_output+0xe7e/0x14e0 net/ipv6/ah6.c:439 The warnings are false positives as the extension headers are intentionally placed after the IPv6 header in memory. Fix by properly copying addresses and extension headers separately, and introduce helper functions to avoid code duplication.
CVE-2025-40362 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ceph: fix multifs mds auth caps issue The mds auth caps check should also validate the fsname along with the associated caps. Not doing so would result in applying the mds auth caps of one fs on to the other fs in a multifs ceph cluster. The bug causes multiple issues w.r.t user authentication, following is one such example. Steps to Reproduce (on vstart cluster): 1. Create two file systems in a cluster, say 'fsname1' and 'fsname2' 2. Authorize read only permission to the user 'client.usr' on fs 'fsname1' $ceph fs authorize fsname1 client.usr / r 3. Authorize read and write permission to the same user 'client.usr' on fs 'fsname2' $ceph fs authorize fsname2 client.usr / rw 4. Update the keyring $ceph auth get client.usr >> ./keyring With above permssions for the user 'client.usr', following is the expectation. a. The 'client.usr' should be able to only read the contents and not allowed to create or delete files on file system 'fsname1'. b. The 'client.usr' should be able to read/write on file system 'fsname2'. But, with this bug, the 'client.usr' is allowed to read/write on file system 'fsname1'. See below. 5. Mount the file system 'fsname1' with the user 'client.usr' $sudo bin/mount.ceph usr@.fsname1=/ /kmnt_fsname1_usr/ 6. Try creating a file on file system 'fsname1' with user 'client.usr'. This should fail but passes with this bug. $touch /kmnt_fsname1_usr/file1 7. Mount the file system 'fsname1' with the user 'client.admin' and create a file. $sudo bin/mount.ceph admin@.fsname1=/ /kmnt_fsname1_admin $echo "data" > /kmnt_fsname1_admin/admin_file1 8. Try removing an existing file on file system 'fsname1' with the user 'client.usr'. This shoudn't succeed but succeeds with the bug. $rm -f /kmnt_fsname1_usr/admin_file1 For more information, please take a look at the corresponding mds/fuse patch and tests added by looking into the tracker mentioned below. v2: Fix a possible null dereference in doutc v3: Don't store fsname from mdsmap, validate against ceph_mount_options's fsname and use it v4: Code refactor, better warning message and fix possible compiler warning [ Slava.Dubeyko: "fsname check failed" -> "fsname mismatch" ]
CVE-2025-40361 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: ext4: change GFP_KERNEL to GFP_NOFS to avoid deadlock The parent function ext4_xattr_inode_lookup_create already uses GFP_NOFS for memory alloction, so the function ext4_xattr_inode_cache_find should use same gfp_flag.
CVE-2025-40360 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/sysfb: Do not dereference NULL pointer in plane reset The plane state in __drm_gem_reset_shadow_plane() can be NULL. Do not deref that pointer, but forward NULL to the other plane-reset helpers. Clears plane->state to NULL. v2: - fix typo in commit description (Javier)
CVE-2025-40359 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86/intel: Fix KASAN global-out-of-bounds warning When running "perf mem record" command on CWF, the below KASAN global-out-of-bounds warning is seen. ================================================================== BUG: KASAN: global-out-of-bounds in cmt_latency_data+0x176/0x1b0 Read of size 4 at addr ffffffffb721d000 by task dtlb/9850 Call Trace: kasan_report+0xb8/0xf0 cmt_latency_data+0x176/0x1b0 setup_arch_pebs_sample_data+0xf49/0x2560 intel_pmu_drain_arch_pebs+0x577/0xb00 handle_pmi_common+0x6c4/0xc80 The issue is caused by below code in __grt_latency_data(). The code tries to access x86_hybrid_pmu structure which doesn't exist on non-hybrid platform like CWF. WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big) So add is_hybrid() check before calling this WARN_ON_ONCE to fix the global-out-of-bounds access issue.
CVE-2025-40358 1 Linux 1 Linux Kernel 2025-12-16 N/A
In the Linux kernel, the following vulnerability has been resolved: riscv: stacktrace: Disable KASAN checks for non-current tasks Unwinding the stack of a task other than current, KASAN would report "BUG: KASAN: out-of-bounds in walk_stackframe+0x41c/0x460" There is a same issue on x86 and has been resolved by the commit 84936118bdf3 ("x86/unwind: Disable KASAN checks for non-current tasks") The solution could be applied to RISC-V too. This patch also can solve the issue: https://seclists.org/oss-sec/2025/q4/23 [pjw@kernel.org: clean up checkpatch issues]
CVE-2025-40357 1 Linux 1 Linux Kernel 2025-12-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/smc: fix general protection fault in __smc_diag_dump The syzbot report a crash: Oops: general protection fault, probably for non-canonical address 0xfbd5a5d5a0000003: 0000 [#1] SMP KASAN NOPTI KASAN: maybe wild-memory-access in range [0xdead4ead00000018-0xdead4ead0000001f] CPU: 1 UID: 0 PID: 6949 Comm: syz.0.335 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025 RIP: 0010:smc_diag_msg_common_fill net/smc/smc_diag.c:44 [inline] RIP: 0010:__smc_diag_dump.constprop.0+0x3ca/0x2550 net/smc/smc_diag.c:89 Call Trace: <TASK> smc_diag_dump_proto+0x26d/0x420 net/smc/smc_diag.c:217 smc_diag_dump+0x27/0x90 net/smc/smc_diag.c:234 netlink_dump+0x539/0xd30 net/netlink/af_netlink.c:2327 __netlink_dump_start+0x6d6/0x990 net/netlink/af_netlink.c:2442 netlink_dump_start include/linux/netlink.h:341 [inline] smc_diag_handler_dump+0x1f9/0x240 net/smc/smc_diag.c:251 __sock_diag_cmd net/core/sock_diag.c:249 [inline] sock_diag_rcv_msg+0x438/0x790 net/core/sock_diag.c:285 netlink_rcv_skb+0x158/0x420 net/netlink/af_netlink.c:2552 netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline] netlink_unicast+0x5a7/0x870 net/netlink/af_netlink.c:1346 netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1896 sock_sendmsg_nosec net/socket.c:714 [inline] __sock_sendmsg net/socket.c:729 [inline] ____sys_sendmsg+0xa95/0xc70 net/socket.c:2614 ___sys_sendmsg+0x134/0x1d0 net/socket.c:2668 __sys_sendmsg+0x16d/0x220 net/socket.c:2700 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0x4e0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> The process like this: (CPU1) | (CPU2) ---------------------------------|------------------------------- inet_create() | // init clcsock to NULL | sk = sk_alloc() | | // unexpectedly change clcsock | inet_init_csk_locks() | | // add sk to hash table | smc_inet_init_sock() | smc_sk_init() | smc_hash_sk() | | // traverse the hash table | smc_diag_dump_proto | __smc_diag_dump() | // visit wrong clcsock | smc_diag_msg_common_fill() // alloc clcsock | smc_create_clcsk | sock_create_kern | With CONFIG_DEBUG_LOCK_ALLOC=y, the smc->clcsock is unexpectedly changed in inet_init_csk_locks(). The INET_PROTOSW_ICSK flag is no need by smc, just remove it. After removing the INET_PROTOSW_ICSK flag, this patch alse revert commit 6fd27ea183c2 ("net/smc: fix lacks of icsk_syn_mss with IPPROTO_SMC") to avoid casting smc_sock to inet_connection_sock.