Search

Search Results (331556 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-25161 1 Alistgo 1 Alist 2026-02-05 8.8 High
Alist is a file list program that supports multiple storages, powered by Gin and Solidjs. Prior to version 3.57.0, the application contains path traversal vulnerability in multiple file operation handlers. An authenticated attacker can bypass directory-level authorisation by injecting traversal sequences into filename components, enabling unauthorised file removal, movement and copying across user boundaries within the same storage mount. This issue has been patched in version 3.57.0.
CVE-2026-23104 1 Linux 1 Linux Kernel 2026-02-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: fix devlink reload call trace Commit 4da71a77fc3b ("ice: read internal temperature sensor") introduced internal temperature sensor reading via HWMON. ice_hwmon_init() was added to ice_init_feature() and ice_hwmon_exit() was added to ice_remove(). As a result if devlink reload is used to reinit the device and then the driver is removed, a call trace can occur. BUG: unable to handle page fault for address: ffffffffc0fd4b5d Call Trace: string+0x48/0xe0 vsnprintf+0x1f9/0x650 sprintf+0x62/0x80 name_show+0x1f/0x30 dev_attr_show+0x19/0x60 The call trace repeats approximately every 10 minutes when system monitoring tools (e.g., sadc) attempt to read the orphaned hwmon sysfs attributes that reference freed module memory. The sequence is: 1. Driver load, ice_hwmon_init() gets called from ice_init_feature() 2. Devlink reload down, flow does not call ice_remove() 3. Devlink reload up, ice_hwmon_init() gets called from ice_init_feature() resulting in a second instance 4. Driver unload, ice_hwmon_exit() called from ice_remove() leaving the first hwmon instance orphaned with dangling pointer Fix this by moving ice_hwmon_exit() from ice_remove() to ice_deinit_features() to ensure proper cleanup symmetry with ice_hwmon_init().
CVE-2023-38010 1 Ibm 1 Cloud Pak System 2026-02-05 5.3 Medium
IBM Cloud Pak System displays sensitive information in user messages that could aid in further attacks against the system.
CVE-2026-25578 1 Navidrome 1 Navidrome 2026-02-05 6.1 Medium
Navidrome is an open source web-based music collection server and streamer. Prior to version 0.60.0, a cross-site scripting vulnerability in the frontend allows a malicious attacker to inject code through the comment metadata of a song to exfiltrate user credentials. This issue has been patched in version 0.60.0.
CVE-2026-0948 1 Drupal 1 Microsoft Entra Id Sso Login 2026-02-05 6.5 Medium
Authentication Bypass Using an Alternate Path or Channel vulnerability in Drupal Microsoft Entra ID SSO Login allows Privilege Escalation.This issue affects Microsoft Entra ID SSO Login: from 0.0.0 before 1.0.4.
CVE-2026-23055 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: i2c: riic: Move suspend handling to NOIRQ phase Commit 53326135d0e0 ("i2c: riic: Add suspend/resume support") added suspend support for the Renesas I2C driver and following this change on RZ/G3E the following WARNING is seen on entering suspend ... [ 134.275704] Freezing remaining freezable tasks completed (elapsed 0.001 seconds) [ 134.285536] ------------[ cut here ]------------ [ 134.290298] i2c i2c-2: Transfer while suspended [ 134.295174] WARNING: drivers/i2c/i2c-core.h:56 at __i2c_smbus_xfer+0x1e4/0x214, CPU#0: systemd-sleep/388 [ 134.365507] Tainted: [W]=WARN [ 134.368485] Hardware name: Renesas SMARC EVK version 2 based on r9a09g047e57 (DT) [ 134.375961] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 134.382935] pc : __i2c_smbus_xfer+0x1e4/0x214 [ 134.387329] lr : __i2c_smbus_xfer+0x1e4/0x214 [ 134.391717] sp : ffff800083f23860 [ 134.395040] x29: ffff800083f23860 x28: 0000000000000000 x27: ffff800082ed5d60 [ 134.402226] x26: 0000001f4395fd74 x25: 0000000000000007 x24: 0000000000000001 [ 134.409408] x23: 0000000000000000 x22: 000000000000006f x21: ffff800083f23936 [ 134.416589] x20: ffff0000c090e140 x19: ffff0000c090e0d0 x18: 0000000000000006 [ 134.423771] x17: 6f63657320313030 x16: 2e30206465737061 x15: ffff800083f23280 [ 134.430953] x14: 0000000000000000 x13: ffff800082b16ce8 x12: 0000000000000f09 [ 134.438134] x11: 0000000000000503 x10: ffff800082b6ece8 x9 : ffff800082b16ce8 [ 134.445315] x8 : 00000000ffffefff x7 : ffff800082b6ece8 x6 : 80000000fffff000 [ 134.452495] x5 : 0000000000000504 x4 : 0000000000000000 x3 : 0000000000000000 [ 134.459672] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000c9ee9e80 [ 134.466851] Call trace: [ 134.469311] __i2c_smbus_xfer+0x1e4/0x214 (P) [ 134.473715] i2c_smbus_xfer+0xbc/0x120 [ 134.477507] i2c_smbus_read_byte_data+0x4c/0x84 [ 134.482077] isl1208_i2c_read_time+0x44/0x178 [rtc_isl1208] [ 134.487703] isl1208_rtc_read_time+0x14/0x20 [rtc_isl1208] [ 134.493226] __rtc_read_time+0x44/0x88 [ 134.497012] rtc_read_time+0x3c/0x68 [ 134.500622] rtc_suspend+0x9c/0x170 The warning is triggered because I2C transfers can still be attempted while the controller is already suspended, due to inappropriate ordering of the system sleep callbacks. If the controller is autosuspended, there is no way to wake it up once runtime PM disabled (in suspend_late()). During system resume, the I2C controller will be available only after runtime PM is re-enabled (in resume_early()). However, this may be too late for some devices. Wake up the controller in the suspend() callback while runtime PM is still enabled. The I2C controller will remain available until the suspend_noirq() callback (pm_runtime_force_suspend()) is called. During resume, the I2C controller can be restored by the resume_noirq() callback (pm_runtime_force_resume()). Finally, the resume() callback re-enables autosuspend. As a result, the I2C controller can remain available until the system enters suspend_noirq() and from resume_noirq().
CVE-2026-23065 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86/amd: Fix memory leak in wbrf_record() The tmp buffer is allocated using kcalloc() but is not freed if acpi_evaluate_dsm() fails. This causes a memory leak in the error path. Fix this by explicitly freeing the tmp buffer in the error handling path of acpi_evaluate_dsm().
CVE-2026-23077 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/vma: fix anon_vma UAF on mremap() faulted, unfaulted merge Patch series "mm/vma: fix anon_vma UAF on mremap() faulted, unfaulted merge", v2. Commit 879bca0a2c4f ("mm/vma: fix incorrectly disallowed anonymous VMA merges") introduced the ability to merge previously unavailable VMA merge scenarios. However, it is handling merges incorrectly when it comes to mremap() of a faulted VMA adjacent to an unfaulted VMA. The issues arise in three cases: 1. Previous VMA unfaulted: copied -----| v |-----------|.............| | unfaulted |(faulted VMA)| |-----------|.............| prev 2. Next VMA unfaulted: copied -----| v |.............|-----------| |(faulted VMA)| unfaulted | |.............|-----------| next 3. Both adjacent VMAs unfaulted: copied -----| v |-----------|.............|-----------| | unfaulted |(faulted VMA)| unfaulted | |-----------|.............|-----------| prev next This series fixes each of these cases, and introduces self tests to assert that the issues are corrected. I also test a further case which was already handled, to assert that my changes continues to correctly handle it: 4. prev unfaulted, next faulted: copied -----| v |-----------|.............|-----------| | unfaulted |(faulted VMA)| faulted | |-----------|.............|-----------| prev next This bug was discovered via a syzbot report, linked to in the first patch in the series, I confirmed that this series fixes the bug. I also discovered that we are failing to check that the faulted VMA was not forked when merging a copied VMA in cases 1-3 above, an issue this series also addresses. I also added self tests to assert that this is resolved (and confirmed that the tests failed prior to this). I also cleaned up vma_expand() as part of this work, renamed vma_had_uncowed_parents() to vma_is_fork_child() as the previous name was unduly confusing, and simplified the comments around this function. This patch (of 4): Commit 879bca0a2c4f ("mm/vma: fix incorrectly disallowed anonymous VMA merges") introduced the ability to merge previously unavailable VMA merge scenarios. The key piece of logic introduced was the ability to merge a faulted VMA immediately next to an unfaulted VMA, which relies upon dup_anon_vma() to correctly handle anon_vma state. In the case of the merge of an existing VMA (that is changing properties of a VMA and then merging if those properties are shared by adjacent VMAs), dup_anon_vma() is invoked correctly. However in the case of the merge of a new VMA, a corner case peculiar to mremap() was missed. The issue is that vma_expand() only performs dup_anon_vma() if the target (the VMA that will ultimately become the merged VMA): is not the next VMA, i.e. the one that appears after the range in which the new VMA is to be established. A key insight here is that in all other cases other than mremap(), a new VMA merge either expands an existing VMA, meaning that the target VMA will be that VMA, or would have anon_vma be NULL. Specifically: * __mmap_region() - no anon_vma in place, initial mapping. * do_brk_flags() - expanding an existing VMA. * vma_merge_extend() - expanding an existing VMA. * relocate_vma_down() - no anon_vma in place, initial mapping. In addition, we are in the unique situation of needing to duplicate anon_vma state from a VMA that is neither the previous or next VMA being merged with. dup_anon_vma() deals exclusively with the target=unfaulted, src=faulted case. This leaves four possibilities, in each case where the copied VMA is faulted: 1. Previous VMA unfaulted: copied -----| ---truncated---
CVE-2026-0944 1 Drupal 1 Group Invite 2026-02-05 5.3 Medium
Improper Check for Unusual or Exceptional Conditions vulnerability in Drupal Group invite allows Forceful Browsing.This issue affects Group invite: from 0.0.0 before 2.3.9, from 3.0.0 before 3.0.4, from 4.0.0 before 4.0.4.
CVE-2026-0945 1 Drupal 1 Role Delegation 2026-02-05 N/A
Privilege Defined With Unsafe Actions vulnerability in Drupal Role Delegation allows Privilege Escalation.This issue affects Role Delegation: from 1.3.0 before 1.5.0.
CVE-2026-23100 1 Linux 1 Linux Kernel 2026-02-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/hugetlb: fix hugetlb_pmd_shared() Patch series "mm/hugetlb: fixes for PMD table sharing (incl. using mmu_gather)", v3. One functional fix, one performance regression fix, and two related comment fixes. I cleaned up my prototype I recently shared [1] for the performance fix, deferring most of the cleanups I had in the prototype to a later point. While doing that I identified the other things. The goal of this patch set is to be backported to stable trees "fairly" easily. At least patch #1 and #4. Patch #1 fixes hugetlb_pmd_shared() not detecting any sharing Patch #2 + #3 are simple comment fixes that patch #4 interacts with. Patch #4 is a fix for the reported performance regression due to excessive IPI broadcasts during fork()+exit(). The last patch is all about TLB flushes, IPIs and mmu_gather. Read: complicated There are plenty of cleanups in the future to be had + one reasonable optimization on x86. But that's all out of scope for this series. Runtime tested, with a focus on fixing the performance regression using the original reproducer [2] on x86. This patch (of 4): We switched from (wrongly) using the page count to an independent shared count. Now, shared page tables have a refcount of 1 (excluding speculative references) and instead use ptdesc->pt_share_count to identify sharing. We didn't convert hugetlb_pmd_shared(), so right now, we would never detect a shared PMD table as such, because sharing/unsharing no longer touches the refcount of a PMD table. Page migration, like mbind() or migrate_pages() would allow for migrating folios mapped into such shared PMD tables, even though the folios are not exclusive. In smaps we would account them as "private" although they are "shared", and we would be wrongly setting the PM_MMAP_EXCLUSIVE in the pagemap interface. Fix it by properly using ptdesc_pmd_is_shared() in hugetlb_pmd_shared().
CVE-2026-23079 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: gpio: cdev: Fix resource leaks on errors in lineinfo_changed_notify() On error handling paths, lineinfo_changed_notify() doesn't free the allocated resources which results leaks. Fix it.
CVE-2026-23088 1 Linux 1 Linux Kernel 2026-02-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix crash on synthetic stacktrace field usage When creating a synthetic event based on an existing synthetic event that had a stacktrace field and the new synthetic event used that field a kernel crash occurred: ~# cd /sys/kernel/tracing ~# echo 's:stack unsigned long stack[];' > dynamic_events ~# echo 'hist:keys=prev_pid:s0=common_stacktrace if prev_state & 3' >> events/sched/sched_switch/trigger ~# echo 'hist:keys=next_pid:s1=$s0:onmatch(sched.sched_switch).trace(stack,$s1)' >> events/sched/sched_switch/trigger The above creates a synthetic event that takes a stacktrace when a task schedules out in a non-running state and passes that stacktrace to the sched_switch event when that task schedules back in. It triggers the "stack" synthetic event that has a stacktrace as its field (called "stack"). ~# echo 's:syscall_stack s64 id; unsigned long stack[];' >> dynamic_events ~# echo 'hist:keys=common_pid:s2=stack' >> events/synthetic/stack/trigger ~# echo 'hist:keys=common_pid:s3=$s2,i0=id:onmatch(synthetic.stack).trace(syscall_stack,$i0,$s3)' >> events/raw_syscalls/sys_exit/trigger The above makes another synthetic event called "syscall_stack" that attaches the first synthetic event (stack) to the sys_exit trace event and records the stacktrace from the stack event with the id of the system call that is exiting. When enabling this event (or using it in a historgram): ~# echo 1 > events/synthetic/syscall_stack/enable Produces a kernel crash! BUG: unable to handle page fault for address: 0000000000400010 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP PTI CPU: 6 UID: 0 PID: 1257 Comm: bash Not tainted 6.16.3+deb14-amd64 #1 PREEMPT(lazy) Debian 6.16.3-1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-debian-1.17.0-1 04/01/2014 RIP: 0010:trace_event_raw_event_synth+0x90/0x380 Code: c5 00 00 00 00 85 d2 0f 84 e1 00 00 00 31 db eb 34 0f 1f 00 66 66 2e 0f 1f 84 00 00 00 00 00 66 66 2e 0f 1f 84 00 00 00 00 00 <49> 8b 04 24 48 83 c3 01 8d 0c c5 08 00 00 00 01 cd 41 3b 5d 40 0f RSP: 0018:ffffd2670388f958 EFLAGS: 00010202 RAX: ffff8ba1065cc100 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: fffff266ffda7b90 RDI: ffffd2670388f9b0 RBP: 0000000000000010 R08: ffff8ba104e76000 R09: ffffd2670388fa50 R10: ffff8ba102dd42e0 R11: ffffffff9a908970 R12: 0000000000400010 R13: ffff8ba10a246400 R14: ffff8ba10a710220 R15: fffff266ffda7b90 FS: 00007fa3bc63f740(0000) GS:ffff8ba2e0f48000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000400010 CR3: 0000000107f9e003 CR4: 0000000000172ef0 Call Trace: <TASK> ? __tracing_map_insert+0x208/0x3a0 action_trace+0x67/0x70 event_hist_trigger+0x633/0x6d0 event_triggers_call+0x82/0x130 trace_event_buffer_commit+0x19d/0x250 trace_event_raw_event_sys_exit+0x62/0xb0 syscall_exit_work+0x9d/0x140 do_syscall_64+0x20a/0x2f0 ? trace_event_raw_event_sched_switch+0x12b/0x170 ? save_fpregs_to_fpstate+0x3e/0x90 ? _raw_spin_unlock+0xe/0x30 ? finish_task_switch.isra.0+0x97/0x2c0 ? __rseq_handle_notify_resume+0xad/0x4c0 ? __schedule+0x4b8/0xd00 ? restore_fpregs_from_fpstate+0x3c/0x90 ? switch_fpu_return+0x5b/0xe0 ? do_syscall_64+0x1ef/0x2f0 ? do_fault+0x2e9/0x540 ? __handle_mm_fault+0x7d1/0xf70 ? count_memcg_events+0x167/0x1d0 ? handle_mm_fault+0x1d7/0x2e0 ? do_user_addr_fault+0x2c3/0x7f0 entry_SYSCALL_64_after_hwframe+0x76/0x7e The reason is that the stacktrace field is not labeled as such, and is treated as a normal field and not as a dynamic event that it is. In trace_event_raw_event_synth() the event is field is still treated as a dynamic array, but the retrieval of the data is considered a normal field, and the reference is just the meta data: // Meta data is retrieved instead of a dynamic array ---truncated---
CVE-2026-25518 1 Cert-manager 1 Cert-manager 2026-02-05 5.9 Medium
cert-manager adds certificates and certificate issuers as resource types in Kubernetes clusters, and simplifies the process of obtaining, renewing and using those certificates. In versions from 1.18.0 to before 1.18.5 and from 1.19.0 to before 1.19.3, the cert-manager-controller performs DNS lookups during ACME DNS-01 processing (for zone discovery and propagation self-checks). By default, these lookups use standard unencrypted DNS. An attacker who can intercept and modify DNS traffic from the cert-manager-controller pod can insert a crafted entry into cert-manager's DNS cache. Accessing this entry will trigger a panic, resulting in denial‑of‑service (DoS) of the cert-manager controller. The issue can also be exploited if the authoritative DNS server for the domain being validated is controlled by a malicious actor. This issue has been patched in versions 1.18.5 and 1.19.3.
CVE-2026-25160 1 Alistgo 1 Alist 2026-02-05 9.1 Critical
Alist is a file list program that supports multiple storages, powered by Gin and Solidjs. Prior to version 3.57.0, the application disables TLS certificate verification by default for all outgoing storage driver communications, making the system vulnerable to Man-in-the-Middle (MitM) attacks. This enables the complete decryption, theft, and manipulation of all data transmitted during storage operations, severely compromising the confidentiality and integrity of user data. This issue has been patched in version 3.57.0.
CVE-2024-40685 1 Ibm 1 Operations Analytics - Log Analysis 2026-02-05 4.3 Medium
IBM Operations Analytics – Log Analysis versions 1.3.5.0 through 1.3.8.3 and IBM SmartCloud Analytics – Log Analysis are vulnerable to a cross-site request forgery (CSRF) vulnerability that could allow an attacker to trick a trusted user into performing unauthorized actions.
CVE-2019-25275 1 Filehorse 1 Bartvpn 2026-02-05 7.8 High
BartVPN 1.2.2 contains an unquoted service path vulnerability in the BartVPNService that allows local attackers to potentially execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted binary path by placing malicious executables in specific file system locations to hijack the service's execution context.
CVE-2024-39724 1 Ibm 1 Big Sql 2026-02-05 5.3 Medium
IBM Db2 Big SQL on Cloud Pak for Data versions 7.6 (on CP4D 4.8), 7.7 (on CP4D 5.0), and 7.8 (on CP4D 5.1) do not properly limit the allocation of system resources. An authenticated user with internal knowledge of the environment could exploit this weakness to cause a denial of service.
CVE-2025-2134 1 Ibm 1 Jazz Reporting Service 2026-02-05 3.5 Low
IBM Jazz Reporting Service could allow an authenticated user on the network to affect the system's performance using complicated queries due to insufficient resource pooling.
CVE-2025-64712 1 Unstructured-io 1 Unstructured 2026-02-05 9.8 Critical
The unstructured library provides open-source components for ingesting and pre-processing images and text documents, such as PDFs, HTML, Word docs, and many more. Prior to version 0.18.18, a path traversal vulnerability in the partition_msg function allows an attacker to write or overwrite arbitrary files on the filesystem when processing malicious MSG files with attachments. This issue has been patched in version 0.18.18.