CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A path traversal issue in ZipUtils.unzip and TarUtils.untar in Deep Java Library (DJL) on all platforms allows a bad actor to write files to arbitrary locations. |
Variable response times in the AWS Sign-in IAM user login flow allowed for the use of brute force enumeration techniques to identify valid IAM usernames in an arbitrary AWS account. |
An issue in the native clients for Amazon WorkSpaces (when running PCoIP protocol) may allow an attacker to access remote sessions via man-in-the-middle. |
An issue in the native clients for Amazon WorkSpaces (when running Amazon DCV protocol), Amazon AppStream 2.0, and Amazon DCV Clients may allow an attacker to access remote sessions via man-in-the-middle. |
The AWS ALB Route Directive Adapter For Istio repo https://github.com/awslabs/aws-alb-route-directive-adapter-for-istio/tree/master provides an OIDC authentication mechanism that was integrated into the open source Kubeflow project. The adapter uses JWT for authentication, but lacks proper signer and issuer validation. In deployments of ALB that ignore security best practices, where ALB targets are directly exposed to internet traffic, an actor can provide a JWT signed by an untrusted entity in order to spoof OIDC-federated sessions and successfully bypass authentication.
The repository/package has been deprecated, is end of life, and is no longer supported. As a security best practice, ensure that your ELB targets (e.g. EC2 Instances, Fargate Tasks etc.) do not have public IP addresses. Ensure any forked or derivative code validate that the signer attribute in the JWT match the ARN of the Application Load Balancer that the service is configured to use. |
A data.all admin team member who has access to the customer-owned AWS Account where data.all is deployed may be able to extract user data from data.all application logs in data.all via CloudWatch log scanning for particular operations that interact with customer producer teams data. |
Due to inconsistent authorization permissions, data.all may allow an external actor with an authenticated account to perform restricted operations against DataSets and Environments. |
A SQL injection in the Amazon Redshift ODBC Driver v2.1.5.0 (Windows or Linux) allows a user to gain escalated privileges via the SQLTables or SQLColumns Metadata APIs. Users are recommended to upgrade to the driver version 2.1.6.0 or revert to driver version 2.1.4.0. |
A SQL injection in the Amazon Redshift Python Connector v2.1.4 allows a user to gain escalated privileges via the get_schemas, get_tables, or get_columns Metadata APIs. Users are recommended to upgrade to the driver version 2.1.5 or revert to driver version 2.1.3. |
A SQL injection in the Amazon Redshift JDBC Driver in v2.1.0.31 allows a user to gain escalated privileges via the getSchemas, getTables, or getColumns Metadata APIs. Users should upgrade to the driver version 2.1.0.32 or revert to driver version 2.1.0.30. |
An authenticated data.all user is able to perform mutating UPDATE operations on persisted Notification records in data.all for group notifications that their user is not a member of. |
The Amazon.ApplicationLoadBalancer.Identity.AspNetCore repo https://github.com/awslabs/aws-alb-identity-aspnetcore#validatetokensignature contains Middleware that can be used in conjunction with the Application Load Balancer (ALB) OpenId Connect integration and can be used in any ASP.NET https://dotnet.microsoft.com/apps/aspnet Core deployment scenario, including Fargate, EKS, ECS, EC2, and Lambda. In the JWT handling code, it performs signature validation but fails to validate the JWT issuer and signer identity. The signer omission, if combined with a scenario where the infrastructure owner allows internet traffic to the ALB targets (not a recommended configuration), can allow for JWT signing by an untrusted entity and an actor may be able to mimic valid OIDC-federated sessions to the ALB targets.
The repository/package has been deprecated, is end of life, and is no longer supported. As a security best practice, ensure that your ELB targets (e.g. EC2 Instances, Fargate Tasks etc.) do not have public IP addresses. Ensure any forked or derivative code validate that the signer attribute in the JWT match the ARN of the Application Load Balancer that the service is configured to use. |
A security vulnerability has been detected in CRMEB up to 5.6.1. The impacted element is the function testOutUrl of the file app/services/out/OutAccountServices.php. The manipulation of the argument push_token_url leads to server-side request forgery. Remote exploitation of the attack is possible. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
In the Linux kernel, the following vulnerability has been resolved:
udmabuf: validate ubuf->pagecount
Syzbot has reported GPF in sg_alloc_append_table_from_pages(). The
problem was in ubuf->pages == ZERO_PTR.
ubuf->pagecount is calculated from arguments passed from user-space. If
user creates udmabuf with list.size == 0 then ubuf->pagecount will be
also equal to zero; it causes kmalloc_array() to return ZERO_PTR.
Fix it by validating ubuf->pagecount before passing it to
kmalloc_array(). |
In the Linux kernel, the following vulnerability has been resolved:
drm/plane: Move range check for format_count earlier
While the check for format_count > 64 in __drm_universal_plane_init()
shouldn't be hit (it's a WARN_ON), in its current position it will then
leak the plane->format_types array and fail to call
drm_mode_object_unregister() leaking the modeset identifier. Move it to
the start of the function to avoid allocating those resources in the
first place. |
In the Linux kernel, the following vulnerability has been resolved:
mm/secretmem: fix panic when growing a memfd_secret
When one tries to grow an existing memfd_secret with ftruncate, one gets
a panic [1]. For example, doing the following reliably induces the
panic:
fd = memfd_secret();
ftruncate(fd, 10);
ptr = mmap(NULL, 10, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
strcpy(ptr, "123456789");
munmap(ptr, 10);
ftruncate(fd, 20);
The basic reason for this is, when we grow with ftruncate, we call down
into simple_setattr, and then truncate_inode_pages_range, and eventually
we try to zero part of the memory. The normal truncation code does this
via the direct map (i.e., it calls page_address() and hands that to
memset()).
For memfd_secret though, we specifically don't map our pages via the
direct map (i.e. we call set_direct_map_invalid_noflush() on every
fault). So the address returned by page_address() isn't useful, and
when we try to memset() with it we panic.
This patch avoids the panic by implementing a custom setattr for
memfd_secret, which detects resizes specifically (setting the size for
the first time works just fine, since there are no existing pages to try
to zero), and rejects them with EINVAL.
One could argue growing should be supported, but I think that will
require a significantly more lengthy change. So, I propose a minimal
fix for the benefit of stable kernels, and then perhaps to extend
memfd_secret to support growing in a separate patch.
[1]:
BUG: unable to handle page fault for address: ffffa0a889277028
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD afa01067 P4D afa01067 PUD 83f909067 PMD 83f8bf067 PTE 800ffffef6d88060
Oops: 0002 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 0 PID: 281 Comm: repro Not tainted 5.17.0-dbg-DEV #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:memset_erms+0x9/0x10
Code: c1 e9 03 40 0f b6 f6 48 b8 01 01 01 01 01 01 01 01 48 0f af c6 f3 48 ab 89 d1 f3 aa 4c 89 c8 c3 90 49 89 f9 40 88 f0 48 89 d1 <f3> aa 4c 89 c8 c3 90 49 89 fa 40 0f b6 ce 48 b8 01 01 01 01 01 01
RSP: 0018:ffffb932c09afbf0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffda63c4249dc0 RCX: 0000000000000fd8
RDX: 0000000000000fd8 RSI: 0000000000000000 RDI: ffffa0a889277028
RBP: ffffb932c09afc00 R08: 0000000000001000 R09: ffffa0a889277028
R10: 0000000000020023 R11: 0000000000000000 R12: ffffda63c4249dc0
R13: ffffa0a890d70d98 R14: 0000000000000028 R15: 0000000000000fd8
FS: 00007f7294899580(0000) GS:ffffa0af9bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffa0a889277028 CR3: 0000000107ef6006 CR4: 0000000000370ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? zero_user_segments+0x82/0x190
truncate_inode_partial_folio+0xd4/0x2a0
truncate_inode_pages_range+0x380/0x830
truncate_setsize+0x63/0x80
simple_setattr+0x37/0x60
notify_change+0x3d8/0x4d0
do_sys_ftruncate+0x162/0x1d0
__x64_sys_ftruncate+0x1c/0x20
do_syscall_64+0x44/0xa0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Modules linked in: xhci_pci xhci_hcd virtio_net net_failover failover virtio_blk virtio_balloon uhci_hcd ohci_pci ohci_hcd evdev ehci_pci ehci_hcd 9pnet_virtio 9p netfs 9pnet
CR2: ffffa0a889277028
[lkp@intel.com: secretmem_iops can be static]
[axelrasmussen@google.com: return EINVAL] |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix panic when forwarding a pkt with no in6 dev
kongweibin reported a kernel panic in ip6_forward() when input interface
has no in6 dev associated.
The following tc commands were used to reproduce this panic:
tc qdisc del dev vxlan100 root
tc qdisc add dev vxlan100 root netem corrupt 5% |
In the Linux kernel, the following vulnerability has been resolved:
mm: fix unexpected zeroed page mapping with zram swap
Two processes under CLONE_VM cloning, user process can be corrupted by
seeing zeroed page unexpectedly.
CPU A CPU B
do_swap_page do_swap_page
SWP_SYNCHRONOUS_IO path SWP_SYNCHRONOUS_IO path
swap_readpage valid data
swap_slot_free_notify
delete zram entry
swap_readpage zeroed(invalid) data
pte_lock
map the *zero data* to userspace
pte_unlock
pte_lock
if (!pte_same)
goto out_nomap;
pte_unlock
return and next refault will
read zeroed data
The swap_slot_free_notify is bogus for CLONE_VM case since it doesn't
increase the refcount of swap slot at copy_mm so it couldn't catch up
whether it's safe or not to discard data from backing device. In the
case, only the lock it could rely on to synchronize swap slot freeing is
page table lock. Thus, this patch gets rid of the swap_slot_free_notify
function. With this patch, CPU A will see correct data.
CPU A CPU B
do_swap_page do_swap_page
SWP_SYNCHRONOUS_IO path SWP_SYNCHRONOUS_IO path
swap_readpage original data
pte_lock
map the original data
swap_free
swap_range_free
bd_disk->fops->swap_slot_free_notify
swap_readpage read zeroed data
pte_unlock
pte_lock
if (!pte_same)
goto out_nomap;
pte_unlock
return
on next refault will see mapped data by CPU B
The concern of the patch would increase memory consumption since it
could keep wasted memory with compressed form in zram as well as
uncompressed form in address space. However, most of cases of zram uses
no readahead and do_swap_page is followed by swap_free so it will free
the compressed form from in zram quickly. |
In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Deactivate sysctl_record_panic_msg by default in isolated guests
hv_panic_page might contain guest-sensitive information, do not dump it
over to Hyper-V by default in isolated guests.
While at it, update some comments in hyperv_{panic,die}_event(). |
In the Linux kernel, the following vulnerability has been resolved:
cachefiles: unmark inode in use in error path
Unmark inode in use if error encountered. If the in-use flag leakage
occurs in cachefiles_open_file(), Cachefiles will complain "Inode
already in use" when later another cookie with the same index key is
looked up.
If the in-use flag leakage occurs in cachefiles_create_tmpfile(), though
the "Inode already in use" warning won't be triggered, fix the leakage
anyway. |