| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mce: Work around an erratum on fast string copy instructions
A rare kernel panic scenario can happen when the following conditions
are met due to an erratum on fast string copy instructions:
1) An uncorrected error.
2) That error must be in first cache line of a page.
3) Kernel must execute page_copy from the page immediately before that
page.
The fast string copy instructions ("REP; MOVS*") could consume an
uncorrectable memory error in the cache line _right after_ the desired
region to copy and raise an MCE.
Bit 0 of MSR_IA32_MISC_ENABLE can be cleared to disable fast string
copy and will avoid such spurious machine checks. However, that is less
preferable due to the permanent performance impact. Considering memory
poison is rare, it's desirable to keep fast string copy enabled until an
MCE is seen.
Intel has confirmed the following:
1. The CPU erratum of fast string copy only applies to Skylake,
Cascade Lake and Cooper Lake generations.
Directly return from the MCE handler:
2. Will result in complete execution of the "REP; MOVS*" with no data
loss or corruption.
3. Will not result in another MCE firing on the next poisoned cache line
due to "REP; MOVS*".
4. Will resume execution from a correct point in code.
5. Will result in the same instruction that triggered the MCE firing a
second MCE immediately for any other software recoverable data fetch
errors.
6. Is not safe without disabling the fast string copy, as the next fast
string copy of the same buffer on the same CPU would result in a PANIC
MCE.
This should mitigate the erratum completely with the only caveat that
the fast string copy is disabled on the affected hyper thread thus
performance degradation.
This is still better than the OS crashing on MCEs raised on an
irrelevant process due to "REP; MOVS*' accesses in a kernel context,
e.g., copy_page.
Injected errors on 1st cache line of 8 anonymous pages of process
'proc1' and observed MCE consumption from 'proc2' with no panic
(directly returned).
Without the fix, the host panicked within a few minutes on a
random 'proc2' process due to kernel access from copy_page.
[ bp: Fix comment style + touch ups, zap an unlikely(), improve the
quirk function's readability. ] |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix scheduling while atomic
The driver makes a call into midlayer (fc_remote_port_delete) which can put
the thread to sleep. The thread that originates the call is in interrupt
context. The combination of the two trigger a crash. Schedule the call in
non-interrupt context where it is more safe.
kernel: BUG: scheduling while atomic: swapper/7/0/0x00010000
kernel: Call Trace:
kernel: <IRQ>
kernel: dump_stack+0x66/0x81
kernel: __schedule_bug.cold.90+0x5/0x1d
kernel: __schedule+0x7af/0x960
kernel: schedule+0x28/0x80
kernel: schedule_timeout+0x26d/0x3b0
kernel: wait_for_completion+0xb4/0x140
kernel: ? wake_up_q+0x70/0x70
kernel: __wait_rcu_gp+0x12c/0x160
kernel: ? sdev_evt_alloc+0xc0/0x180 [scsi_mod]
kernel: synchronize_sched+0x6c/0x80
kernel: ? call_rcu_bh+0x20/0x20
kernel: ? __bpf_trace_rcu_invoke_callback+0x10/0x10
kernel: sdev_evt_alloc+0xfd/0x180 [scsi_mod]
kernel: starget_for_each_device+0x85/0xb0 [scsi_mod]
kernel: ? scsi_init_io+0x360/0x3d0 [scsi_mod]
kernel: scsi_init_io+0x388/0x3d0 [scsi_mod]
kernel: device_for_each_child+0x54/0x90
kernel: fc_remote_port_delete+0x70/0xe0 [scsi_transport_fc]
kernel: qla2x00_schedule_rport_del+0x62/0xf0 [qla2xxx]
kernel: qla2x00_mark_device_lost+0x9c/0xd0 [qla2xxx]
kernel: qla24xx_handle_plogi_done_event+0x55f/0x570 [qla2xxx]
kernel: qla2x00_async_login_sp_done+0xd2/0x100 [qla2xxx]
kernel: qla24xx_logio_entry+0x13a/0x3c0 [qla2xxx]
kernel: qla24xx_process_response_queue+0x306/0x400 [qla2xxx]
kernel: qla24xx_msix_rsp_q+0x3f/0xb0 [qla2xxx]
kernel: __handle_irq_event_percpu+0x40/0x180
kernel: handle_irq_event_percpu+0x30/0x80
kernel: handle_irq_event+0x36/0x60 |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: dwmac-tegra: Read iommu stream id from device tree
Nvidia's Tegra MGBE controllers require the IOMMU "Stream ID" (SID) to be
written to the MGBE_WRAP_AXI_ASID0_CTRL register.
The current driver is hard coded to use MGBE0's SID for all controllers.
This causes softirq time outs and kernel panics when using controllers
other than MGBE0.
Example dmesg errors when an ethernet cable is connected to MGBE1:
[ 116.133290] tegra-mgbe 6910000.ethernet eth1: Link is Up - 1Gbps/Full - flow control rx/tx
[ 121.851283] tegra-mgbe 6910000.ethernet eth1: NETDEV WATCHDOG: CPU: 5: transmit queue 0 timed out 5690 ms
[ 121.851782] tegra-mgbe 6910000.ethernet eth1: Reset adapter.
[ 121.892464] tegra-mgbe 6910000.ethernet eth1: Register MEM_TYPE_PAGE_POOL RxQ-0
[ 121.905920] tegra-mgbe 6910000.ethernet eth1: PHY [stmmac-1:00] driver [Aquantia AQR113] (irq=171)
[ 121.907356] tegra-mgbe 6910000.ethernet eth1: Enabling Safety Features
[ 121.907578] tegra-mgbe 6910000.ethernet eth1: IEEE 1588-2008 Advanced Timestamp supported
[ 121.908399] tegra-mgbe 6910000.ethernet eth1: registered PTP clock
[ 121.908582] tegra-mgbe 6910000.ethernet eth1: configuring for phy/10gbase-r link mode
[ 125.961292] tegra-mgbe 6910000.ethernet eth1: Link is Up - 1Gbps/Full - flow control rx/tx
[ 181.921198] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
[ 181.921404] rcu: 7-....: (1 GPs behind) idle=540c/1/0x4000000000000002 softirq=1748/1749 fqs=2337
[ 181.921684] rcu: (detected by 4, t=6002 jiffies, g=1357, q=1254 ncpus=8)
[ 181.921878] Sending NMI from CPU 4 to CPUs 7:
[ 181.921886] NMI backtrace for cpu 7
[ 181.922131] CPU: 7 UID: 0 PID: 0 Comm: swapper/7 Kdump: loaded Not tainted 6.13.0-rc3+ #6
[ 181.922390] Hardware name: NVIDIA CTI Forge + Orin AGX/Jetson, BIOS 202402.1-Unknown 10/28/2024
[ 181.922658] pstate: 40400009 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 181.922847] pc : handle_softirqs+0x98/0x368
[ 181.922978] lr : __do_softirq+0x18/0x20
[ 181.923095] sp : ffff80008003bf50
[ 181.923189] x29: ffff80008003bf50 x28: 0000000000000008 x27: 0000000000000000
[ 181.923379] x26: ffffce78ea277000 x25: 0000000000000000 x24: 0000001c61befda0
[ 181.924486] x23: 0000000060400009 x22: ffffce78e99918bc x21: ffff80008018bd70
[ 181.925568] x20: ffffce78e8bb00d8 x19: ffff80008018bc20 x18: 0000000000000000
[ 181.926655] x17: ffff318ebe7d3000 x16: ffff800080038000 x15: 0000000000000000
[ 181.931455] x14: ffff000080816680 x13: ffff318ebe7d3000 x12: 000000003464d91d
[ 181.938628] x11: 0000000000000040 x10: ffff000080165a70 x9 : ffffce78e8bb0160
[ 181.945804] x8 : ffff8000827b3160 x7 : f9157b241586f343 x6 : eeb6502a01c81c74
[ 181.953068] x5 : a4acfcdd2e8096bb x4 : ffffce78ea277340 x3 : 00000000ffffd1e1
[ 181.960329] x2 : 0000000000000101 x1 : ffffce78ea277340 x0 : ffff318ebe7d3000
[ 181.967591] Call trace:
[ 181.970043] handle_softirqs+0x98/0x368 (P)
[ 181.974240] __do_softirq+0x18/0x20
[ 181.977743] ____do_softirq+0x14/0x28
[ 181.981415] call_on_irq_stack+0x24/0x30
[ 181.985180] do_softirq_own_stack+0x20/0x30
[ 181.989379] __irq_exit_rcu+0x114/0x140
[ 181.993142] irq_exit_rcu+0x14/0x28
[ 181.996816] el1_interrupt+0x44/0xb8
[ 182.000316] el1h_64_irq_handler+0x14/0x20
[ 182.004343] el1h_64_irq+0x80/0x88
[ 182.007755] cpuidle_enter_state+0xc4/0x4a8 (P)
[ 182.012305] cpuidle_enter+0x3c/0x58
[ 182.015980] cpuidle_idle_call+0x128/0x1c0
[ 182.020005] do_idle+0xe0/0xf0
[ 182.023155] cpu_startup_entry+0x3c/0x48
[ 182.026917] secondary_start_kernel+0xdc/0x120
[ 182.031379] __secondary_switched+0x74/0x78
[ 212.971162] rcu: INFO: rcu_preempt detected expedited stalls on CPUs/tasks: { 7-.... } 6103 jiffies s: 417 root: 0x80/.
[ 212.985935] rcu: blocking rcu_node structures (internal RCU debug):
[ 212.992758] Sending NMI from CPU 0 to CPUs 7:
[ 212.998539] NMI backtrace for cpu 7
[ 213.004304] CPU: 7 UID: 0 PI
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
highmem: fix checks in __kmap_local_sched_{in,out}
When CONFIG_DEBUG_KMAP_LOCAL is enabled __kmap_local_sched_{in,out} check
that even slots in the tsk->kmap_ctrl.pteval are unmapped. The slots are
initialized with 0 value, but the check is done with pte_none. 0 pte
however does not necessarily mean that pte_none will return true. e.g.
on xtensa it returns false, resulting in the following runtime warnings:
WARNING: CPU: 0 PID: 101 at mm/highmem.c:627 __kmap_local_sched_out+0x51/0x108
CPU: 0 PID: 101 Comm: touch Not tainted 5.17.0-rc7-00010-gd3a1cdde80d2-dirty #13
Call Trace:
dump_stack+0xc/0x40
__warn+0x8f/0x174
warn_slowpath_fmt+0x48/0xac
__kmap_local_sched_out+0x51/0x108
__schedule+0x71a/0x9c4
preempt_schedule_irq+0xa0/0xe0
common_exception_return+0x5c/0x93
do_wp_page+0x30e/0x330
handle_mm_fault+0xa70/0xc3c
do_page_fault+0x1d8/0x3c4
common_exception+0x7f/0x7f
WARNING: CPU: 0 PID: 101 at mm/highmem.c:664 __kmap_local_sched_in+0x50/0xe0
CPU: 0 PID: 101 Comm: touch Tainted: G W 5.17.0-rc7-00010-gd3a1cdde80d2-dirty #13
Call Trace:
dump_stack+0xc/0x40
__warn+0x8f/0x174
warn_slowpath_fmt+0x48/0xac
__kmap_local_sched_in+0x50/0xe0
finish_task_switch$isra$0+0x1ce/0x2f8
__schedule+0x86e/0x9c4
preempt_schedule_irq+0xa0/0xe0
common_exception_return+0x5c/0x93
do_wp_page+0x30e/0x330
handle_mm_fault+0xa70/0xc3c
do_page_fault+0x1d8/0x3c4
common_exception+0x7f/0x7f
Fix it by replacing !pte_none(pteval) with pte_val(pteval) != 0. |
| In the Linux kernel, the following vulnerability has been resolved:
dm ioctl: prevent potential spectre v1 gadget
It appears like cmd could be a Spectre v1 gadget as it's supplied by a
user and used as an array index. Prevent the contents of kernel memory
from being leaked to userspace via speculative execution by using
array_index_nospec. |
| In the Linux kernel, the following vulnerability has been resolved:
udmabuf: validate ubuf->pagecount
Syzbot has reported GPF in sg_alloc_append_table_from_pages(). The
problem was in ubuf->pages == ZERO_PTR.
ubuf->pagecount is calculated from arguments passed from user-space. If
user creates udmabuf with list.size == 0 then ubuf->pagecount will be
also equal to zero; it causes kmalloc_array() to return ZERO_PTR.
Fix it by validating ubuf->pagecount before passing it to
kmalloc_array(). |
| In the Linux kernel, the following vulnerability has been resolved:
mm/secretmem: fix panic when growing a memfd_secret
When one tries to grow an existing memfd_secret with ftruncate, one gets
a panic [1]. For example, doing the following reliably induces the
panic:
fd = memfd_secret();
ftruncate(fd, 10);
ptr = mmap(NULL, 10, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
strcpy(ptr, "123456789");
munmap(ptr, 10);
ftruncate(fd, 20);
The basic reason for this is, when we grow with ftruncate, we call down
into simple_setattr, and then truncate_inode_pages_range, and eventually
we try to zero part of the memory. The normal truncation code does this
via the direct map (i.e., it calls page_address() and hands that to
memset()).
For memfd_secret though, we specifically don't map our pages via the
direct map (i.e. we call set_direct_map_invalid_noflush() on every
fault). So the address returned by page_address() isn't useful, and
when we try to memset() with it we panic.
This patch avoids the panic by implementing a custom setattr for
memfd_secret, which detects resizes specifically (setting the size for
the first time works just fine, since there are no existing pages to try
to zero), and rejects them with EINVAL.
One could argue growing should be supported, but I think that will
require a significantly more lengthy change. So, I propose a minimal
fix for the benefit of stable kernels, and then perhaps to extend
memfd_secret to support growing in a separate patch.
[1]:
BUG: unable to handle page fault for address: ffffa0a889277028
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD afa01067 P4D afa01067 PUD 83f909067 PMD 83f8bf067 PTE 800ffffef6d88060
Oops: 0002 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 0 PID: 281 Comm: repro Not tainted 5.17.0-dbg-DEV #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:memset_erms+0x9/0x10
Code: c1 e9 03 40 0f b6 f6 48 b8 01 01 01 01 01 01 01 01 48 0f af c6 f3 48 ab 89 d1 f3 aa 4c 89 c8 c3 90 49 89 f9 40 88 f0 48 89 d1 <f3> aa 4c 89 c8 c3 90 49 89 fa 40 0f b6 ce 48 b8 01 01 01 01 01 01
RSP: 0018:ffffb932c09afbf0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffda63c4249dc0 RCX: 0000000000000fd8
RDX: 0000000000000fd8 RSI: 0000000000000000 RDI: ffffa0a889277028
RBP: ffffb932c09afc00 R08: 0000000000001000 R09: ffffa0a889277028
R10: 0000000000020023 R11: 0000000000000000 R12: ffffda63c4249dc0
R13: ffffa0a890d70d98 R14: 0000000000000028 R15: 0000000000000fd8
FS: 00007f7294899580(0000) GS:ffffa0af9bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffa0a889277028 CR3: 0000000107ef6006 CR4: 0000000000370ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? zero_user_segments+0x82/0x190
truncate_inode_partial_folio+0xd4/0x2a0
truncate_inode_pages_range+0x380/0x830
truncate_setsize+0x63/0x80
simple_setattr+0x37/0x60
notify_change+0x3d8/0x4d0
do_sys_ftruncate+0x162/0x1d0
__x64_sys_ftruncate+0x1c/0x20
do_syscall_64+0x44/0xa0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Modules linked in: xhci_pci xhci_hcd virtio_net net_failover failover virtio_blk virtio_balloon uhci_hcd ohci_pci ohci_hcd evdev ehci_pci ehci_hcd 9pnet_virtio 9p netfs 9pnet
CR2: ffffa0a889277028
[lkp@intel.com: secretmem_iops can be static]
[axelrasmussen@google.com: return EINVAL] |
| In the Linux kernel, the following vulnerability has been resolved:
veth: Ensure eth header is in skb's linear part
After feeding a decapsulated packet to a veth device with act_mirred,
skb_headlen() may be 0. But veth_xmit() calls __dev_forward_skb(),
which expects at least ETH_HLEN byte of linear data (as
__dev_forward_skb2() calls eth_type_trans(), which pulls ETH_HLEN bytes
unconditionally).
Use pskb_may_pull() to ensure veth_xmit() respects this constraint.
kernel BUG at include/linux/skbuff.h:2328!
RIP: 0010:eth_type_trans+0xcf/0x140
Call Trace:
<IRQ>
__dev_forward_skb2+0xe3/0x160
veth_xmit+0x6e/0x250 [veth]
dev_hard_start_xmit+0xc7/0x200
__dev_queue_xmit+0x47f/0x520
? skb_ensure_writable+0x85/0xa0
? skb_mpls_pop+0x98/0x1c0
tcf_mirred_act+0x442/0x47e [act_mirred]
tcf_action_exec+0x86/0x140
fl_classify+0x1d8/0x1e0 [cls_flower]
? dma_pte_clear_level+0x129/0x1a0
? dma_pte_clear_level+0x129/0x1a0
? prb_fill_curr_block+0x2f/0xc0
? skb_copy_bits+0x11a/0x220
__tcf_classify+0x58/0x110
tcf_classify_ingress+0x6b/0x140
__netif_receive_skb_core.constprop.0+0x47d/0xfd0
? __iommu_dma_unmap_swiotlb+0x44/0x90
__netif_receive_skb_one_core+0x3d/0xa0
netif_receive_skb+0x116/0x170
be_process_rx+0x22f/0x330 [be2net]
be_poll+0x13c/0x370 [be2net]
__napi_poll+0x2a/0x170
net_rx_action+0x22f/0x2f0
__do_softirq+0xca/0x2a8
__irq_exit_rcu+0xc1/0xe0
common_interrupt+0x83/0xa0 |
| In the Linux kernel, the following vulnerability has been resolved:
s390/fpu: Re-add exception handling in load_fpu_state()
With the recent rewrite of the fpu code exception handling for the
lfpc instruction within load_fpu_state() was erroneously removed.
Add it again to prevent that loading invalid floating point register
values cause an unhandled specification exception. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-fabrics: use reserved tag for reg read/write command
In some scenarios, if too many commands are issued by nvme command in
the same time by user tasks, this may exhaust all tags of admin_q. If
a reset (nvme reset or IO timeout) occurs before these commands finish,
reconnect routine may fail to update nvme regs due to insufficient tags,
which will cause kernel hang forever. In order to workaround this issue,
maybe we can let reg_read32()/reg_read64()/reg_write32() use reserved
tags. This maybe safe for nvmf:
1. For the disable ctrl path, we will not issue connect command
2. For the enable ctrl / fw activate path, since connect and reg_xx()
are called serially.
So the reserved tags may still be enough while reg_xx() use reserved tags. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Remove tst_run from lwt_seg6local_prog_ops.
The syzbot reported that the lwt_seg6 related BPF ops can be invoked
via bpf_test_run() without without entering input_action_end_bpf()
first.
Martin KaFai Lau said that self test for BPF_PROG_TYPE_LWT_SEG6LOCAL
probably didn't work since it was introduced in commit 04d4b274e2a
("ipv6: sr: Add seg6local action End.BPF"). The reason is that the
per-CPU variable seg6_bpf_srh_states::srh is never assigned in the self
test case but each BPF function expects it.
Remove test_run for BPF_PROG_TYPE_LWT_SEG6LOCAL. |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: fix finding a last resort AG in xfs_filestream_pick_ag
When the main loop in xfs_filestream_pick_ag fails to find a suitable
AG it tries to just pick the online AG. But the loop for that uses
args->pag as loop iterator while the later code expects pag to be
set. Fix this by reusing the max_pag case for this last resort, and
also add a check for impossible case of no AG just to make sure that
the uninitialized pag doesn't even escape in theory. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: tegra194: Move controller cleanups to pex_ep_event_pex_rst_deassert()
Currently, the endpoint cleanup function dw_pcie_ep_cleanup() and EPF
deinit notify function pci_epc_deinit_notify() are called during the
execution of pex_ep_event_pex_rst_assert() i.e., when the host has asserted
PERST#. But quickly after this step, refclk will also be disabled by the
host.
All of the tegra194 endpoint SoCs supported as of now depend on the refclk
from the host for keeping the controller operational. Due to this
limitation, any access to the hardware registers in the absence of refclk
will result in a whole endpoint crash. Unfortunately, most of the
controller cleanups require accessing the hardware registers (like eDMA
cleanup performed in dw_pcie_ep_cleanup(), etc...). So these cleanup
functions can cause the crash in the endpoint SoC once host asserts PERST#.
One way to address this issue is by generating the refclk in the endpoint
itself and not depending on the host. But that is not always possible as
some of the endpoint designs do require the endpoint to consume refclk from
the host.
Thus, fix this crash by moving the controller cleanups to the start of
the pex_ep_event_pex_rst_deassert() function. This function is called
whenever the host has deasserted PERST# and it is guaranteed that the
refclk would be active at this point. So at the start of this function
(after enabling resources) the controller cleanup can be performed. Once
finished, rest of the code execution for PERST# deassert can continue as
usual. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Fix NFSv3 SETATTR/CREATE's handling of large file sizes
iattr::ia_size is a loff_t, so these NFSv3 procedures must be
careful to deal with incoming client size values that are larger
than s64_max without corrupting the value.
Silently capping the value results in storing a different value
than the client passed in which is unexpected behavior, so remove
the min_t() check in decode_sattr3().
Note that RFC 1813 permits only the WRITE procedure to return
NFS3ERR_FBIG. We believe that NFSv3 reference implementations
also return NFS3ERR_FBIG when ia_size is too large. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: change vm->task_info handling
This patch changes the handling and lifecycle of vm->task_info object.
The major changes are:
- vm->task_info is a dynamically allocated ptr now, and its uasge is
reference counted.
- introducing two new helper funcs for task_info lifecycle management
- amdgpu_vm_get_task_info: reference counts up task_info before
returning this info
- amdgpu_vm_put_task_info: reference counts down task_info
- last put to task_info() frees task_info from the vm.
This patch also does logistical changes required for existing usage
of vm->task_info.
V2: Do not block all the prints when task_info not found (Felix)
V3: Fixed review comments from Felix
- Fix wrong indentation
- No debug message for -ENOMEM
- Add NULL check for task_info
- Do not duplicate the debug messages (ti vs no ti)
- Get first reference of task_info in vm_init(), put last
in vm_fini()
V4: Fixed review comments from Felix
- fix double reference increment in create_task_info
- change amdgpu_vm_get_task_info_pasid
- additional changes in amdgpu_gem.c while porting |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: Use disable_delayed_work_sync
This makes use of disable_delayed_work_sync instead
cancel_delayed_work_sync as it not only cancel the ongoing work but also
disables new submit which is disarable since the object holding the work
is about to be freed. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: vmalloc: check if a hash-index is in cpu_possible_mask
The problem is that there are systems where cpu_possible_mask has gaps
between set CPUs, for example SPARC. In this scenario addr_to_vb_xa()
hash function can return an index which accesses to not-possible and not
setup CPU area using per_cpu() macro. This results in an oops on SPARC.
A per-cpu vmap_block_queue is also used as hash table, incorrectly
assuming the cpu_possible_mask has no gaps. Fix it by adjusting an index
to a next possible CPU. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/filemap: skip to create PMD-sized page cache if needed
On ARM64, HPAGE_PMD_ORDER is 13 when the base page size is 64KB. The
PMD-sized page cache can't be supported by xarray as the following error
messages indicate.
------------[ cut here ]------------
WARNING: CPU: 35 PID: 7484 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128
Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \
nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \
nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \
ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm \
fuse xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 \
sha1_ce virtio_net net_failover virtio_console virtio_blk failover \
dimlib virtio_mmio
CPU: 35 PID: 7484 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #9
Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024
pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : xas_split_alloc+0xf8/0x128
lr : split_huge_page_to_list_to_order+0x1c4/0x720
sp : ffff800087a4f6c0
x29: ffff800087a4f6c0 x28: ffff800087a4f720 x27: 000000001fffffff
x26: 0000000000000c40 x25: 000000000000000d x24: ffff00010625b858
x23: ffff800087a4f720 x22: ffffffdfc0780000 x21: 0000000000000000
x20: 0000000000000000 x19: ffffffdfc0780000 x18: 000000001ff40000
x17: 00000000ffffffff x16: 0000018000000000 x15: 51ec004000000000
x14: 0000e00000000000 x13: 0000000000002000 x12: 0000000000000020
x11: 51ec000000000000 x10: 51ece1c0ffff8000 x9 : ffffbeb961a44d28
x8 : 0000000000000003 x7 : ffffffdfc0456420 x6 : ffff0000e1aa6eb8
x5 : 20bf08b4fe778fca x4 : ffffffdfc0456420 x3 : 0000000000000c40
x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000
Call trace:
xas_split_alloc+0xf8/0x128
split_huge_page_to_list_to_order+0x1c4/0x720
truncate_inode_partial_folio+0xdc/0x160
truncate_inode_pages_range+0x1b4/0x4a8
truncate_pagecache_range+0x84/0xa0
xfs_flush_unmap_range+0x70/0x90 [xfs]
xfs_file_fallocate+0xfc/0x4d8 [xfs]
vfs_fallocate+0x124/0x2e8
ksys_fallocate+0x4c/0xa0
__arm64_sys_fallocate+0x24/0x38
invoke_syscall.constprop.0+0x7c/0xd8
do_el0_svc+0xb4/0xd0
el0_svc+0x44/0x1d8
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x17c/0x180
Fix it by skipping to allocate PMD-sized page cache when its size is
larger than MAX_PAGECACHE_ORDER. For this specific case, we will fall to
regular path where the readahead window is determined by BDI's sysfs file
(read_ahead_kb). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: validate HE operation element parsing
Validate that the HE operation element has the correct
length before parsing it. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: fw: scan offload prohibit all 6 GHz channel if no 6 GHz sband
We have some policy via BIOS to block uses of 6 GHz. In this case, 6 GHz
sband will be NULL even if it is WiFi 7 chip. So, add NULL handling here
to avoid crash. |