CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
drm/tegra: rgb: Fix missing clk_put() in the error handling paths of tegra_dc_rgb_probe()
If clk_get_sys(..., "pll_d2_out0") fails, the clk_get_sys() call must be
undone.
Add the missing clk_put and a new 'put_pll_d_out0' label in the error
handling path, and use it. |
BlueZ Audio Profile AVRCP Improper Validation of Array Index Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code via Bluetooth on affected installations of BlueZ. User interaction is required to exploit this vulnerability in that the target must connect to a malicious device.
The specific flaw exists within the handling of the AVRCP protocol. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-19908. |
The HTTP client drops sensitive headers after following a cross-domain redirect. For example, a request to a.com/ containing an Authorization header which is redirected to b.com/ will not send that header to b.com. In the event that the client received a subsequent same-domain redirect, however, the sensitive headers would be restored. For example, a chain of redirects from a.com/, to b.com/1, and finally to b.com/2 would incorrectly send the Authorization header to b.com/2. |
In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix data races on remote_id
Similar to the previous patch, address the data race on
remote_id, adding the suitable ONCE annotations. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_flow_offload: reset dst in route object after setting up flow
dst is transferred to the flow object, route object does not own it
anymore. Reset dst in route object, otherwise if flow_offload_add()
fails, error path releases dst twice, leading to a refcount underflow. |
In the Linux kernel, the following vulnerability has been resolved:
Revert "net/mlx5: Block entering switchdev mode with ns inconsistency"
This reverts commit 662404b24a4c4d839839ed25e3097571f5938b9b.
The revert is required due to the suspicion it is not good for anything
and cause crash. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: use timestamp to check for set element timeout
Add a timestamp field at the beginning of the transaction, store it
in the nftables per-netns area.
Update set backend .insert, .deactivate and sync gc path to use the
timestamp, this avoids that an element expires while control plane
transaction is still unfinished.
.lookup and .update, which are used from packet path, still use the
current time to check if the element has expired. And .get path and dump
also since this runs lockless under rcu read size lock. Then, there is
async gc which also needs to check the current time since it runs
asynchronously from a workqueue. |
A credentials leak vulnerability was found in the cluster monitoring operator in OCP. This issue may allow a remote attacker who has basic login credentials to check the pod manifest to discover a repository pull secret. |
In the Linux kernel, the following vulnerability has been resolved:
pstore: inode: Only d_invalidate() is needed
Unloading a modular pstore backend with records in pstorefs would
trigger the dput() double-drop warning:
WARNING: CPU: 0 PID: 2569 at fs/dcache.c:762 dput.part.0+0x3f3/0x410
Using the combo of d_drop()/dput() (as mentioned in
Documentation/filesystems/vfs.rst) isn't the right approach here, and
leads to the reference counting problem seen above. Use d_invalidate()
and update the code to not bother checking for error codes that can
never happen.
--- |
In the Linux kernel, the following vulnerability has been resolved:
tcp: fix page frag corruption on page fault
Steffen reported a TCP stream corruption for HTTP requests
served by the apache web-server using a cifs mount-point
and memory mapping the relevant file.
The root cause is quite similar to the one addressed by
commit 20eb4f29b602 ("net: fix sk_page_frag() recursion from
memory reclaim"). Here the nested access to the task page frag
is caused by a page fault on the (mmapped) user-space memory
buffer coming from the cifs file.
The page fault handler performs an smb transaction on a different
socket, inside the same process context. Since sk->sk_allaction
for such socket does not prevent the usage for the task_frag,
the nested allocation modify "under the hood" the page frag
in use by the outer sendmsg call, corrupting the stream.
The overall relevant stack trace looks like the following:
httpd 78268 [001] 3461630.850950: probe:tcp_sendmsg_locked:
ffffffff91461d91 tcp_sendmsg_locked+0x1
ffffffff91462b57 tcp_sendmsg+0x27
ffffffff9139814e sock_sendmsg+0x3e
ffffffffc06dfe1d smb_send_kvec+0x28
[...]
ffffffffc06cfaf8 cifs_readpages+0x213
ffffffff90e83c4b read_pages+0x6b
ffffffff90e83f31 __do_page_cache_readahead+0x1c1
ffffffff90e79e98 filemap_fault+0x788
ffffffff90eb0458 __do_fault+0x38
ffffffff90eb5280 do_fault+0x1a0
ffffffff90eb7c84 __handle_mm_fault+0x4d4
ffffffff90eb8093 handle_mm_fault+0xc3
ffffffff90c74f6d __do_page_fault+0x1ed
ffffffff90c75277 do_page_fault+0x37
ffffffff9160111e page_fault+0x1e
ffffffff9109e7b5 copyin+0x25
ffffffff9109eb40 _copy_from_iter_full+0xe0
ffffffff91462370 tcp_sendmsg_locked+0x5e0
ffffffff91462370 tcp_sendmsg_locked+0x5e0
ffffffff91462b57 tcp_sendmsg+0x27
ffffffff9139815c sock_sendmsg+0x4c
ffffffff913981f7 sock_write_iter+0x97
ffffffff90f2cc56 do_iter_readv_writev+0x156
ffffffff90f2dff0 do_iter_write+0x80
ffffffff90f2e1c3 vfs_writev+0xa3
ffffffff90f2e27c do_writev+0x5c
ffffffff90c042bb do_syscall_64+0x5b
ffffffff916000ad entry_SYSCALL_64_after_hwframe+0x65
The cifs filesystem rightfully sets sk_allocations to GFP_NOFS,
we can avoid the nesting using the sk page frag for allocation
lacking the __GFP_FS flag. Do not define an additional mm-helper
for that, as this is strictly tied to the sk page frag usage.
v1 -> v2:
- use a stricted sk_page_frag() check instead of reordering the
code (Eric) |
In the Linux kernel, the following vulnerability has been resolved:
regmap: maple: Fix cache corruption in regcache_maple_drop()
When keeping the upper end of a cache block entry, the entry[] array
must be indexed by the offset from the base register of the block,
i.e. max - mas.index.
The code was indexing entry[] by only the register address, leading
to an out-of-bounds access that copied some part of the kernel
memory over the cache contents.
This bug was not detected by the regmap KUnit test because it only
tests with a block of registers starting at 0, so mas.index == 0. |
In the Linux kernel, the following vulnerability has been resolved:
ppdev: Add an error check in register_device
In register_device, the return value of ida_simple_get is unchecked,
in witch ida_simple_get will use an invalid index value.
To address this issue, index should be checked after ida_simple_get. When
the index value is abnormal, a warning message should be printed, the port
should be dropped, and the value should be recorded. |
In the Linux kernel, the following vulnerability has been resolved:
proc/vmcore: fix clearing user buffer by properly using clear_user()
To clear a user buffer we cannot simply use memset, we have to use
clear_user(). With a virtio-mem device that registers a vmcore_cb and
has some logically unplugged memory inside an added Linux memory block,
I can easily trigger a BUG by copying the vmcore via "cp":
systemd[1]: Starting Kdump Vmcore Save Service...
kdump[420]: Kdump is using the default log level(3).
kdump[453]: saving to /sysroot/var/crash/127.0.0.1-2021-11-11-14:59:22/
kdump[458]: saving vmcore-dmesg.txt to /sysroot/var/crash/127.0.0.1-2021-11-11-14:59:22/
kdump[465]: saving vmcore-dmesg.txt complete
kdump[467]: saving vmcore
BUG: unable to handle page fault for address: 00007f2374e01000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0003) - permissions violation
PGD 7a523067 P4D 7a523067 PUD 7a528067 PMD 7a525067 PTE 800000007048f867
Oops: 0003 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 468 Comm: cp Not tainted 5.15.0+ #6
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-27-g64f37cc530f1-prebuilt.qemu.org 04/01/2014
RIP: 0010:read_from_oldmem.part.0.cold+0x1d/0x86
Code: ff ff ff e8 05 ff fe ff e9 b9 e9 7f ff 48 89 de 48 c7 c7 38 3b 60 82 e8 f1 fe fe ff 83 fd 08 72 3c 49 8d 7d 08 4c 89 e9 89 e8 <49> c7 45 00 00 00 00 00 49 c7 44 05 f8 00 00 00 00 48 83 e7 f81
RSP: 0018:ffffc9000073be08 EFLAGS: 00010212
RAX: 0000000000001000 RBX: 00000000002fd000 RCX: 00007f2374e01000
RDX: 0000000000000001 RSI: 00000000ffffdfff RDI: 00007f2374e01008
RBP: 0000000000001000 R08: 0000000000000000 R09: ffffc9000073bc50
R10: ffffc9000073bc48 R11: ffffffff829461a8 R12: 000000000000f000
R13: 00007f2374e01000 R14: 0000000000000000 R15: ffff88807bd421e8
FS: 00007f2374e12140(0000) GS:ffff88807f000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f2374e01000 CR3: 000000007a4aa000 CR4: 0000000000350eb0
Call Trace:
read_vmcore+0x236/0x2c0
proc_reg_read+0x55/0xa0
vfs_read+0x95/0x190
ksys_read+0x4f/0xc0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Some x86-64 CPUs have a CPU feature called "Supervisor Mode Access
Prevention (SMAP)", which is used to detect wrong access from the kernel
to user buffers like this: SMAP triggers a permissions violation on
wrong access. In the x86-64 variant of clear_user(), SMAP is properly
handled via clac()+stac().
To fix, properly use clear_user() when we're dealing with a user buffer. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: ensure offloading TID queue exists
The resume code path assumes that the TX queue for the offloading TID
has been configured. At resume time it then tries to sync the write
pointer as it may have been updated by the firmware.
In the unusual event that no packets have been send on TID 0, the queue
will not have been allocated and this causes a crash. Fix this by
ensuring the queue exist at suspend time. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: ipc4-pcm: Workaround for crashed firmware on system suspend
When the system is suspended while audio is active, the
sof_ipc4_pcm_hw_free() is invoked to reset the pipelines since during
suspend the DSP is turned off, streams will be re-started after resume.
If the firmware crashes during while audio is running (or when we reset
the stream before suspend) then the sof_ipc4_set_multi_pipeline_state()
will fail with IPC error and the state change is interrupted.
This will cause misalignment between the kernel and firmware state on next
DSP boot resulting errors returned by firmware for IPC messages, eventually
failing the audio resume.
On stream close the errors are ignored so the kernel state will be
corrected on the next DSP boot, so the second boot after the DSP panic.
If sof_ipc4_trigger_pipelines() is called from sof_ipc4_pcm_hw_free() then
state parameter is SOF_IPC4_PIPE_RESET and only in this case.
Treat a forced pipeline reset similarly to how we treat a pcm_free by
ignoring error on state sending to allow the kernel's state to be
consistent with the state the firmware will have after the next boot. |
In the Linux kernel, the following vulnerability has been resolved:
md: Fix missing release of 'active_io' for flush
submit_flushes
atomic_set(&mddev->flush_pending, 1);
rdev_for_each_rcu(rdev, mddev)
atomic_inc(&mddev->flush_pending);
bi->bi_end_io = md_end_flush
submit_bio(bi);
/* flush io is done first */
md_end_flush
if (atomic_dec_and_test(&mddev->flush_pending))
percpu_ref_put(&mddev->active_io)
-> active_io is not released
if (atomic_dec_and_test(&mddev->flush_pending))
-> missing release of active_io
For consequence, mddev_suspend() will wait for 'active_io' to be zero
forever.
Fix this problem by releasing 'active_io' in submit_flushes() if
'flush_pending' is decreased to zero. |
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86/mmu: Write-protect L2 SPTEs in TDP MMU when clearing dirty status
Check kvm_mmu_page_ad_need_write_protect() when deciding whether to
write-protect or clear D-bits on TDP MMU SPTEs, so that the TDP MMU
accounts for any role-specific reasons for disabling D-bit dirty logging.
Specifically, TDP MMU SPTEs must be write-protected when the TDP MMU is
being used to run an L2 (i.e. L1 has disabled EPT) and PML is enabled.
KVM always disables PML when running L2, even when L1 and L2 GPAs are in
the some domain, so failing to write-protect TDP MMU SPTEs will cause
writes made by L2 to not be reflected in the dirty log.
[sean: massage shortlog and changelog, tweak ternary op formatting] |
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86/pmu: Disable support for adaptive PEBS
Drop support for virtualizing adaptive PEBS, as KVM's implementation is
architecturally broken without an obvious/easy path forward, and because
exposing adaptive PEBS can leak host LBRs to the guest, i.e. can leak
host kernel addresses to the guest.
Bug #1 is that KVM doesn't account for the upper 32 bits of
IA32_FIXED_CTR_CTRL when (re)programming fixed counters, e.g
fixed_ctrl_field() drops the upper bits, reprogram_fixed_counters()
stores local variables as u8s and truncates the upper bits too, etc.
Bug #2 is that, because KVM _always_ sets precise_ip to a non-zero value
for PEBS events, perf will _always_ generate an adaptive record, even if
the guest requested a basic record. Note, KVM will also enable adaptive
PEBS in individual *counter*, even if adaptive PEBS isn't exposed to the
guest, but this is benign as MSR_PEBS_DATA_CFG is guaranteed to be zero,
i.e. the guest will only ever see Basic records.
Bug #3 is in perf. intel_pmu_disable_fixed() doesn't clear the upper
bits either, i.e. leaves ICL_FIXED_0_ADAPTIVE set, and
intel_pmu_enable_fixed() effectively doesn't clear ICL_FIXED_0_ADAPTIVE
either. I.e. perf _always_ enables ADAPTIVE counters, regardless of what
KVM requests.
Bug #4 is that adaptive PEBS *might* effectively bypass event filters set
by the host, as "Updated Memory Access Info Group" records information
that might be disallowed by userspace via KVM_SET_PMU_EVENT_FILTER.
Bug #5 is that KVM doesn't ensure LBR MSRs hold guest values (or at least
zeros) when entering a vCPU with adaptive PEBS, which allows the guest
to read host LBRs, i.e. host RIPs/addresses, by enabling "LBR Entries"
records.
Disable adaptive PEBS support as an immediate fix due to the severity of
the LBR leak in particular, and because fixing all of the bugs will be
non-trivial, e.g. not suitable for backporting to stable kernels.
Note! This will break live migration, but trying to make KVM play nice
with live migration would be quite complicated, wouldn't be guaranteed to
work (i.e. KVM might still kill/confuse the guest), and it's not clear
that there are any publicly available VMMs that support adaptive PEBS,
let alone live migrate VMs that support adaptive PEBS, e.g. QEMU doesn't
support PEBS in any capacity. |
In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: fix DEBUG_LOCKS_WARN_ON(1) when dissolve_free_hugetlb_folio()
When I did memory failure tests recently, below warning occurs:
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 8 PID: 1011 at kernel/locking/lockdep.c:232 __lock_acquire+0xccb/0x1ca0
Modules linked in: mce_inject hwpoison_inject
CPU: 8 PID: 1011 Comm: bash Kdump: loaded Not tainted 6.9.0-rc3-next-20240410-00012-gdb69f219f4be #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
RIP: 0010:__lock_acquire+0xccb/0x1ca0
RSP: 0018:ffffa7a1c7fe3bd0 EFLAGS: 00000082
RAX: 0000000000000000 RBX: eb851eb853975fcf RCX: ffffa1ce5fc1c9c8
RDX: 00000000ffffffd8 RSI: 0000000000000027 RDI: ffffa1ce5fc1c9c0
RBP: ffffa1c6865d3280 R08: ffffffffb0f570a8 R09: 0000000000009ffb
R10: 0000000000000286 R11: ffffffffb0f2ad50 R12: ffffa1c6865d3d10
R13: ffffa1c6865d3c70 R14: 0000000000000000 R15: 0000000000000004
FS: 00007ff9f32aa740(0000) GS:ffffa1ce5fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ff9f3134ba0 CR3: 00000008484e4000 CR4: 00000000000006f0
Call Trace:
<TASK>
lock_acquire+0xbe/0x2d0
_raw_spin_lock_irqsave+0x3a/0x60
hugepage_subpool_put_pages.part.0+0xe/0xc0
free_huge_folio+0x253/0x3f0
dissolve_free_huge_page+0x147/0x210
__page_handle_poison+0x9/0x70
memory_failure+0x4e6/0x8c0
hard_offline_page_store+0x55/0xa0
kernfs_fop_write_iter+0x12c/0x1d0
vfs_write+0x380/0x540
ksys_write+0x64/0xe0
do_syscall_64+0xbc/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7ff9f3114887
RSP: 002b:00007ffecbacb458 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 000000000000000c RCX: 00007ff9f3114887
RDX: 000000000000000c RSI: 0000564494164e10 RDI: 0000000000000001
RBP: 0000564494164e10 R08: 00007ff9f31d1460 R09: 000000007fffffff
R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000000c
R13: 00007ff9f321b780 R14: 00007ff9f3217600 R15: 00007ff9f3216a00
</TASK>
Kernel panic - not syncing: kernel: panic_on_warn set ...
CPU: 8 PID: 1011 Comm: bash Kdump: loaded Not tainted 6.9.0-rc3-next-20240410-00012-gdb69f219f4be #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
panic+0x326/0x350
check_panic_on_warn+0x4f/0x50
__warn+0x98/0x190
report_bug+0x18e/0x1a0
handle_bug+0x3d/0x70
exc_invalid_op+0x18/0x70
asm_exc_invalid_op+0x1a/0x20
RIP: 0010:__lock_acquire+0xccb/0x1ca0
RSP: 0018:ffffa7a1c7fe3bd0 EFLAGS: 00000082
RAX: 0000000000000000 RBX: eb851eb853975fcf RCX: ffffa1ce5fc1c9c8
RDX: 00000000ffffffd8 RSI: 0000000000000027 RDI: ffffa1ce5fc1c9c0
RBP: ffffa1c6865d3280 R08: ffffffffb0f570a8 R09: 0000000000009ffb
R10: 0000000000000286 R11: ffffffffb0f2ad50 R12: ffffa1c6865d3d10
R13: ffffa1c6865d3c70 R14: 0000000000000000 R15: 0000000000000004
lock_acquire+0xbe/0x2d0
_raw_spin_lock_irqsave+0x3a/0x60
hugepage_subpool_put_pages.part.0+0xe/0xc0
free_huge_folio+0x253/0x3f0
dissolve_free_huge_page+0x147/0x210
__page_handle_poison+0x9/0x70
memory_failure+0x4e6/0x8c0
hard_offline_page_store+0x55/0xa0
kernfs_fop_write_iter+0x12c/0x1d0
vfs_write+0x380/0x540
ksys_write+0x64/0xe0
do_syscall_64+0xbc/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7ff9f3114887
RSP: 002b:00007ffecbacb458 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 000000000000000c RCX: 00007ff9f3114887
RDX: 000000000000000c RSI: 0000564494164e10 RDI: 0000000000000001
RBP: 0000564494164e10 R08: 00007ff9f31d1460 R09: 000000007fffffff
R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000000c
R13: 00007ff9f321b780 R14: 00007ff9f3217600 R15: 00007ff9f3216a00
</TASK>
After git bisecting and digging into the code, I believe the root cause is
that _deferred_list field of folio is unioned with _hugetlb_subpool field.
In __update_and_free_hugetlb_folio(), folio->_deferred_
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Unmap the surface before resetting it on a plane state
Switch to a new plane state requires unreferencing of all held surfaces.
In the work required for mob cursors the mapped surfaces started being
cached but the variable indicating whether the surface is currently
mapped was not being reset. This leads to crashes as the duplicated
state, incorrectly, indicates the that surface is mapped even when
no surface is present. That's because after unreferencing the surface
it's perfectly possible for the plane to be backed by a bo instead of a
surface.
Reset the surface mapped flag when unreferencing the plane state surface
to fix null derefs in cleanup. Fixes crashes in KDE KWin 6.0 on Wayland:
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 4 PID: 2533 Comm: kwin_wayland Not tainted 6.7.0-rc3-vmwgfx #2
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020
RIP: 0010:vmw_du_cursor_plane_cleanup_fb+0x124/0x140 [vmwgfx]
Code: 00 00 00 75 3a 48 83 c4 10 5b 5d c3 cc cc cc cc 48 8b b3 a8 00 00 00 48 c7 c7 99 90 43 c0 e8 93 c5 db ca 48 8b 83 a8 00 00 00 <48> 8b 78 28 e8 e3 f>
RSP: 0018:ffffb6b98216fa80 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff969d84cdcb00 RCX: 0000000000000027
RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff969e75f21600
RBP: ffff969d4143dc50 R08: 0000000000000000 R09: ffffb6b98216f920
R10: 0000000000000003 R11: ffff969e7feb3b10 R12: 0000000000000000
R13: 0000000000000000 R14: 000000000000027b R15: ffff969d49c9fc00
FS: 00007f1e8f1b4180(0000) GS:ffff969e75f00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000028 CR3: 0000000104006004 CR4: 00000000003706f0
Call Trace:
<TASK>
? __die+0x23/0x70
? page_fault_oops+0x171/0x4e0
? exc_page_fault+0x7f/0x180
? asm_exc_page_fault+0x26/0x30
? vmw_du_cursor_plane_cleanup_fb+0x124/0x140 [vmwgfx]
drm_atomic_helper_cleanup_planes+0x9b/0xc0
commit_tail+0xd1/0x130
drm_atomic_helper_commit+0x11a/0x140
drm_atomic_commit+0x97/0xd0
? __pfx___drm_printfn_info+0x10/0x10
drm_atomic_helper_update_plane+0xf5/0x160
drm_mode_cursor_universal+0x10e/0x270
drm_mode_cursor_common+0x102/0x230
? __pfx_drm_mode_cursor2_ioctl+0x10/0x10
drm_ioctl_kernel+0xb2/0x110
drm_ioctl+0x26d/0x4b0
? __pfx_drm_mode_cursor2_ioctl+0x10/0x10
? __pfx_drm_ioctl+0x10/0x10
vmw_generic_ioctl+0xa4/0x110 [vmwgfx]
__x64_sys_ioctl+0x94/0xd0
do_syscall_64+0x61/0xe0
? __x64_sys_ioctl+0xaf/0xd0
? syscall_exit_to_user_mode+0x2b/0x40
? do_syscall_64+0x70/0xe0
? __x64_sys_ioctl+0xaf/0xd0
? syscall_exit_to_user_mode+0x2b/0x40
? do_syscall_64+0x70/0xe0
? exc_page_fault+0x7f/0x180
entry_SYSCALL_64_after_hwframe+0x6e/0x76
RIP: 0033:0x7f1e93f279ed
Code: 04 25 28 00 00 00 48 89 45 c8 31 c0 48 8d 45 10 c7 45 b0 10 00 00 00 48 89 45 b8 48 8d 45 d0 48 89 45 c0 b8 10 00 00 00 0f 05 <89> c2 3d 00 f0 ff f>
RSP: 002b:00007ffca0faf600 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 000055db876ed2c0 RCX: 00007f1e93f279ed
RDX: 00007ffca0faf6c0 RSI: 00000000c02464bb RDI: 0000000000000015
RBP: 00007ffca0faf650 R08: 000055db87184010 R09: 0000000000000007
R10: 000055db886471a0 R11: 0000000000000246 R12: 00007ffca0faf6c0
R13: 00000000c02464bb R14: 0000000000000015 R15: 00007ffca0faf790
</TASK>
Modules linked in: snd_seq_dummy snd_hrtimer nf_conntrack_netbios_ns nf_conntrack_broadcast nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_ine>
CR2: 0000000000000028
---[ end trace 0000000000000000 ]---
RIP: 0010:vmw_du_cursor_plane_cleanup_fb+0x124/0x140 [vmwgfx]
Code: 00 00 00 75 3a 48 83 c4 10 5b 5d c3 cc cc cc cc 48 8b b3 a8 00 00 00 48 c7 c7 99 90 43 c0 e8 93 c5 db ca 48 8b 83 a8 00 00 00 <48> 8b 78 28 e8 e3 f>
RSP: 0018:ffffb6b98216fa80 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff969d84cdcb00 RCX: 0000000000000027
RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff969e75f21600
RBP: ffff969d4143
---truncated--- |