CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: Fix backlog accounting in qdisc_dequeue_internal
This issue applies for the following qdiscs: hhf, fq, fq_codel, and
fq_pie, and occurs in their change handlers when adjusting to the new
limit. The problem is the following in the values passed to the
subsequent qdisc_tree_reduce_backlog call given a tbf parent:
When the tbf parent runs out of tokens, skbs of these qdiscs will
be placed in gso_skb. Their peek handlers are qdisc_peek_dequeued,
which accounts for both qlen and backlog. However, in the case of
qdisc_dequeue_internal, ONLY qlen is accounted for when pulling
from gso_skb. This means that these qdiscs are missing a
qdisc_qstats_backlog_dec when dropping packets to satisfy the
new limit in their change handlers.
One can observe this issue with the following (with tc patched to
support a limit of 0):
export TARGET=fq
tc qdisc del dev lo root
tc qdisc add dev lo root handle 1: tbf rate 8bit burst 100b latency 1ms
tc qdisc replace dev lo handle 3: parent 1:1 $TARGET limit 1000
echo ''; echo 'add child'; tc -s -d qdisc show dev lo
ping -I lo -f -c2 -s32 -W0.001 127.0.0.1 2>&1 >/dev/null
echo ''; echo 'after ping'; tc -s -d qdisc show dev lo
tc qdisc change dev lo handle 3: parent 1:1 $TARGET limit 0
echo ''; echo 'after limit drop'; tc -s -d qdisc show dev lo
tc qdisc replace dev lo handle 2: parent 1:1 sfq
echo ''; echo 'post graft'; tc -s -d qdisc show dev lo
The second to last show command shows 0 packets but a positive
number (74) of backlog bytes. The problem becomes clearer in the
last show command, where qdisc_purge_queue triggers
qdisc_tree_reduce_backlog with the positive backlog and causes an
underflow in the tbf parent's backlog (4096 Mb instead of 0).
To fix this issue, the codepath for all clients of qdisc_dequeue_internal
has been simplified: codel, pie, hhf, fq, fq_pie, and fq_codel.
qdisc_dequeue_internal handles the backlog adjustments for all cases that
do not directly use the dequeue handler.
The old fq_codel_change limit adjustment loop accumulated the arguments to
the subsequent qdisc_tree_reduce_backlog call through the cstats field.
However, this is confusing and error prone as fq_codel_dequeue could also
potentially mutate this field (which qdisc_dequeue_internal calls in the
non gso_skb case), so we have unified the code here with other qdiscs. |
In the Linux kernel, the following vulnerability has been resolved:
ppp: fix race conditions in ppp_fill_forward_path
ppp_fill_forward_path() has two race conditions:
1. The ppp->channels list can change between list_empty() and
list_first_entry(), as ppp_lock() is not held. If the only channel
is deleted in ppp_disconnect_channel(), list_first_entry() may
access an empty head or a freed entry, and trigger a panic.
2. pch->chan can be NULL. When ppp_unregister_channel() is called,
pch->chan is set to NULL before pch is removed from ppp->channels.
Fix these by using a lockless RCU approach:
- Use list_first_or_null_rcu() to safely test and access the first list
entry.
- Convert list modifications on ppp->channels to their RCU variants and
add synchronize_net() after removal.
- Check for a NULL pch->chan before dereferencing it. |
In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix oops due to uninitialised variable
Fix smb3_init_transform_rq() to initialise buffer to NULL before calling
netfs_alloc_folioq_buffer() as netfs assumes it can append to the buffer it
is given. Setting it to NULL means it should start a fresh buffer, but the
value is currently undefined. |
In the Linux kernel, the following vulnerability has been resolved:
gve: prevent ethtool ops after shutdown
A crash can occur if an ethtool operation is invoked
after shutdown() is called.
shutdown() is invoked during system shutdown to stop DMA operations
without performing expensive deallocations. It is discouraged to
unregister the netdev in this path, so the device may still be visible
to userspace and kernel helpers.
In gve, shutdown() tears down most internal data structures. If an
ethtool operation is dispatched after shutdown(), it will dereference
freed or NULL pointers, leading to a kernel panic. While graceful
shutdown normally quiesces userspace before invoking the reboot
syscall, forced shutdowns (as observed on GCP VMs) can still trigger
this path.
Fix by calling netif_device_detach() in shutdown().
This marks the device as detached so the ethtool ioctl handler
will skip dispatching operations to the driver. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_reject: don't leak dst refcount for loopback packets
recent patches to add a WARN() when replacing skb dst entry found an
old bug:
WARNING: include/linux/skbuff.h:1165 skb_dst_check_unset include/linux/skbuff.h:1164 [inline]
WARNING: include/linux/skbuff.h:1165 skb_dst_set include/linux/skbuff.h:1210 [inline]
WARNING: include/linux/skbuff.h:1165 nf_reject_fill_skb_dst+0x2a4/0x330 net/ipv4/netfilter/nf_reject_ipv4.c:234
[..]
Call Trace:
nf_send_unreach+0x17b/0x6e0 net/ipv4/netfilter/nf_reject_ipv4.c:325
nft_reject_inet_eval+0x4bc/0x690 net/netfilter/nft_reject_inet.c:27
expr_call_ops_eval net/netfilter/nf_tables_core.c:237 [inline]
..
This is because blamed commit forgot about loopback packets.
Such packets already have a dst_entry attached, even at PRE_ROUTING stage.
Instead of checking hook just check if the skb already has a route
attached to it. |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix vm_bind_ioctl double free bug
If the argument check during an array bind fails, the bind_ops are freed
twice as seen below. Fix this by setting bind_ops to NULL after freeing.
==================================================================
BUG: KASAN: double-free in xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
Free of addr ffff88813bb9b800 by task xe_vm/14198
CPU: 5 UID: 0 PID: 14198 Comm: xe_vm Not tainted 6.16.0-xe-eudebug-cmanszew+ #520 PREEMPT(full)
Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR5 RVP, BIOS ADLPFWI1.R00.2411.A02.2110081023 10/08/2021
Call Trace:
<TASK>
dump_stack_lvl+0x82/0xd0
print_report+0xcb/0x610
? __virt_addr_valid+0x19a/0x300
? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
kasan_report_invalid_free+0xc8/0xf0
? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
check_slab_allocation+0x102/0x130
kfree+0x10d/0x440
? should_fail_ex+0x57/0x2f0
? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
? __pfx_xe_vm_bind_ioctl+0x10/0x10 [xe]
? __lock_acquire+0xab9/0x27f0
? lock_acquire+0x165/0x300
? drm_dev_enter+0x53/0xe0 [drm]
? find_held_lock+0x2b/0x80
? drm_dev_exit+0x30/0x50 [drm]
? drm_ioctl_kernel+0x128/0x1c0 [drm]
drm_ioctl_kernel+0x128/0x1c0 [drm]
? __pfx_xe_vm_bind_ioctl+0x10/0x10 [xe]
? find_held_lock+0x2b/0x80
? __pfx_drm_ioctl_kernel+0x10/0x10 [drm]
? should_fail_ex+0x57/0x2f0
? __pfx_xe_vm_bind_ioctl+0x10/0x10 [xe]
drm_ioctl+0x352/0x620 [drm]
? __pfx_drm_ioctl+0x10/0x10 [drm]
? __pfx_rpm_resume+0x10/0x10
? do_raw_spin_lock+0x11a/0x1b0
? find_held_lock+0x2b/0x80
? __pm_runtime_resume+0x61/0xc0
? rcu_is_watching+0x20/0x50
? trace_irq_enable.constprop.0+0xac/0xe0
xe_drm_ioctl+0x91/0xc0 [xe]
__x64_sys_ioctl+0xb2/0x100
? rcu_is_watching+0x20/0x50
do_syscall_64+0x68/0x2e0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fa9acb24ded
(cherry picked from commit a01b704527c28a2fd43a17a85f8996b75ec8492a) |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Validate UAC3 power domain descriptors, too
UAC3 power domain descriptors need to be verified with its variable
bLength for avoiding the unexpected OOB accesses by malicious
firmware, too. |
In the Linux kernel, the following vulnerability has been resolved:
nfsd: handle get_client_locked() failure in nfsd4_setclientid_confirm()
Lei Lu recently reported that nfsd4_setclientid_confirm() did not check
the return value from get_client_locked(). a SETCLIENTID_CONFIRM could
race with a confirmed client expiring and fail to get a reference. That
could later lead to a UAF.
Fix this by getting a reference early in the case where there is an
extant confirmed client. If that fails then treat it as if there were no
confirmed client found at all.
In the case where the unconfirmed client is expiring, just fail and
return the result from get_client_locked(). |
In the Linux kernel, the following vulnerability has been resolved:
sctp: linearize cloned gso packets in sctp_rcv
A cloned head skb still shares these frag skbs in fraglist with the
original head skb. It's not safe to access these frag skbs.
syzbot reported two use-of-uninitialized-memory bugs caused by this:
BUG: KMSAN: uninit-value in sctp_inq_pop+0x15b7/0x1920 net/sctp/inqueue.c:211
sctp_inq_pop+0x15b7/0x1920 net/sctp/inqueue.c:211
sctp_assoc_bh_rcv+0x1a7/0xc50 net/sctp/associola.c:998
sctp_inq_push+0x2ef/0x380 net/sctp/inqueue.c:88
sctp_backlog_rcv+0x397/0xdb0 net/sctp/input.c:331
sk_backlog_rcv+0x13b/0x420 include/net/sock.h:1122
__release_sock+0x1da/0x330 net/core/sock.c:3106
release_sock+0x6b/0x250 net/core/sock.c:3660
sctp_wait_for_connect+0x487/0x820 net/sctp/socket.c:9360
sctp_sendmsg_to_asoc+0x1ec1/0x1f00 net/sctp/socket.c:1885
sctp_sendmsg+0x32b9/0x4a80 net/sctp/socket.c:2031
inet_sendmsg+0x25a/0x280 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:718 [inline]
and
BUG: KMSAN: uninit-value in sctp_assoc_bh_rcv+0x34e/0xbc0 net/sctp/associola.c:987
sctp_assoc_bh_rcv+0x34e/0xbc0 net/sctp/associola.c:987
sctp_inq_push+0x2a3/0x350 net/sctp/inqueue.c:88
sctp_backlog_rcv+0x3c7/0xda0 net/sctp/input.c:331
sk_backlog_rcv+0x142/0x420 include/net/sock.h:1148
__release_sock+0x1d3/0x330 net/core/sock.c:3213
release_sock+0x6b/0x270 net/core/sock.c:3767
sctp_wait_for_connect+0x458/0x820 net/sctp/socket.c:9367
sctp_sendmsg_to_asoc+0x223a/0x2260 net/sctp/socket.c:1886
sctp_sendmsg+0x3910/0x49f0 net/sctp/socket.c:2032
inet_sendmsg+0x269/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:712 [inline]
This patch fixes it by linearizing cloned gso packets in sctp_rcv(). |
In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds in hfsplus_bnode_read()
The hfsplus_bnode_read() method can trigger the issue:
[ 174.852007][ T9784] ==================================================================
[ 174.852709][ T9784] BUG: KASAN: slab-out-of-bounds in hfsplus_bnode_read+0x2f4/0x360
[ 174.853412][ T9784] Read of size 8 at addr ffff88810b5fc6c0 by task repro/9784
[ 174.854059][ T9784]
[ 174.854272][ T9784] CPU: 1 UID: 0 PID: 9784 Comm: repro Not tainted 6.16.0-rc3 #7 PREEMPT(full)
[ 174.854281][ T9784] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 174.854286][ T9784] Call Trace:
[ 174.854289][ T9784] <TASK>
[ 174.854292][ T9784] dump_stack_lvl+0x10e/0x1f0
[ 174.854305][ T9784] print_report+0xd0/0x660
[ 174.854315][ T9784] ? __virt_addr_valid+0x81/0x610
[ 174.854323][ T9784] ? __phys_addr+0xe8/0x180
[ 174.854330][ T9784] ? hfsplus_bnode_read+0x2f4/0x360
[ 174.854337][ T9784] kasan_report+0xc6/0x100
[ 174.854346][ T9784] ? hfsplus_bnode_read+0x2f4/0x360
[ 174.854354][ T9784] hfsplus_bnode_read+0x2f4/0x360
[ 174.854362][ T9784] hfsplus_bnode_dump+0x2ec/0x380
[ 174.854370][ T9784] ? __pfx_hfsplus_bnode_dump+0x10/0x10
[ 174.854377][ T9784] ? hfsplus_bnode_write_u16+0x83/0xb0
[ 174.854385][ T9784] ? srcu_gp_start+0xd0/0x310
[ 174.854393][ T9784] ? __mark_inode_dirty+0x29e/0xe40
[ 174.854402][ T9784] hfsplus_brec_remove+0x3d2/0x4e0
[ 174.854411][ T9784] __hfsplus_delete_attr+0x290/0x3a0
[ 174.854419][ T9784] ? __pfx_hfs_find_1st_rec_by_cnid+0x10/0x10
[ 174.854427][ T9784] ? __pfx___hfsplus_delete_attr+0x10/0x10
[ 174.854436][ T9784] ? __asan_memset+0x23/0x50
[ 174.854450][ T9784] hfsplus_delete_all_attrs+0x262/0x320
[ 174.854459][ T9784] ? __pfx_hfsplus_delete_all_attrs+0x10/0x10
[ 174.854469][ T9784] ? rcu_is_watching+0x12/0xc0
[ 174.854476][ T9784] ? __mark_inode_dirty+0x29e/0xe40
[ 174.854483][ T9784] hfsplus_delete_cat+0x845/0xde0
[ 174.854493][ T9784] ? __pfx_hfsplus_delete_cat+0x10/0x10
[ 174.854507][ T9784] hfsplus_unlink+0x1ca/0x7c0
[ 174.854516][ T9784] ? __pfx_hfsplus_unlink+0x10/0x10
[ 174.854525][ T9784] ? down_write+0x148/0x200
[ 174.854532][ T9784] ? __pfx_down_write+0x10/0x10
[ 174.854540][ T9784] vfs_unlink+0x2fe/0x9b0
[ 174.854549][ T9784] do_unlinkat+0x490/0x670
[ 174.854557][ T9784] ? __pfx_do_unlinkat+0x10/0x10
[ 174.854565][ T9784] ? __might_fault+0xbc/0x130
[ 174.854576][ T9784] ? getname_flags.part.0+0x1c5/0x550
[ 174.854584][ T9784] __x64_sys_unlink+0xc5/0x110
[ 174.854592][ T9784] do_syscall_64+0xc9/0x480
[ 174.854600][ T9784] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 174.854608][ T9784] RIP: 0033:0x7f6fdf4c3167
[ 174.854614][ T9784] Code: f0 ff ff 73 01 c3 48 8b 0d 26 0d 0e 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 08
[ 174.854622][ T9784] RSP: 002b:00007ffcb948bca8 EFLAGS: 00000206 ORIG_RAX: 0000000000000057
[ 174.854630][ T9784] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f6fdf4c3167
[ 174.854636][ T9784] RDX: 00007ffcb948bcc0 RSI: 00007ffcb948bcc0 RDI: 00007ffcb948bd50
[ 174.854641][ T9784] RBP: 00007ffcb948cd90 R08: 0000000000000001 R09: 00007ffcb948bb40
[ 174.854645][ T9784] R10: 00007f6fdf564fc0 R11: 0000000000000206 R12: 0000561e1bc9c2d0
[ 174.854650][ T9784] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 174.854658][ T9784] </TASK>
[ 174.854661][ T9784]
[ 174.879281][ T9784] Allocated by task 9784:
[ 174.879664][ T9784] kasan_save_stack+0x20/0x40
[ 174.880082][ T9784] kasan_save_track+0x14/0x30
[ 174.880500][ T9784] __kasan_kmalloc+0xaa/0xb0
[ 174.880908][ T9784] __kmalloc_noprof+0x205/0x550
[ 174.881337][ T9784] __hfs_bnode_create+0x107/0x890
[ 174.881779][ T9784] hfsplus_bnode_find+0x2d0/0xd10
[ 174.882222][ T9784] hfsplus_brec_find+0x2b0/0x520
[ 174.882659][ T9784] hfsplus_delete_all_attrs+0x23b/0x3
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc()
The hfsplus_readdir() method is capable to crash by calling
hfsplus_uni2asc():
[ 667.121659][ T9805] ==================================================================
[ 667.122651][ T9805] BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0x902/0xa10
[ 667.123627][ T9805] Read of size 2 at addr ffff88802592f40c by task repro/9805
[ 667.124578][ T9805]
[ 667.124876][ T9805] CPU: 3 UID: 0 PID: 9805 Comm: repro Not tainted 6.16.0-rc3 #1 PREEMPT(full)
[ 667.124886][ T9805] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 667.124890][ T9805] Call Trace:
[ 667.124893][ T9805] <TASK>
[ 667.124896][ T9805] dump_stack_lvl+0x10e/0x1f0
[ 667.124911][ T9805] print_report+0xd0/0x660
[ 667.124920][ T9805] ? __virt_addr_valid+0x81/0x610
[ 667.124928][ T9805] ? __phys_addr+0xe8/0x180
[ 667.124934][ T9805] ? hfsplus_uni2asc+0x902/0xa10
[ 667.124942][ T9805] kasan_report+0xc6/0x100
[ 667.124950][ T9805] ? hfsplus_uni2asc+0x902/0xa10
[ 667.124959][ T9805] hfsplus_uni2asc+0x902/0xa10
[ 667.124966][ T9805] ? hfsplus_bnode_read+0x14b/0x360
[ 667.124974][ T9805] hfsplus_readdir+0x845/0xfc0
[ 667.124984][ T9805] ? __pfx_hfsplus_readdir+0x10/0x10
[ 667.124994][ T9805] ? stack_trace_save+0x8e/0xc0
[ 667.125008][ T9805] ? iterate_dir+0x18b/0xb20
[ 667.125015][ T9805] ? trace_lock_acquire+0x85/0xd0
[ 667.125022][ T9805] ? lock_acquire+0x30/0x80
[ 667.125029][ T9805] ? iterate_dir+0x18b/0xb20
[ 667.125037][ T9805] ? down_read_killable+0x1ed/0x4c0
[ 667.125044][ T9805] ? putname+0x154/0x1a0
[ 667.125051][ T9805] ? __pfx_down_read_killable+0x10/0x10
[ 667.125058][ T9805] ? apparmor_file_permission+0x239/0x3e0
[ 667.125069][ T9805] iterate_dir+0x296/0xb20
[ 667.125076][ T9805] __x64_sys_getdents64+0x13c/0x2c0
[ 667.125084][ T9805] ? __pfx___x64_sys_getdents64+0x10/0x10
[ 667.125091][ T9805] ? __x64_sys_openat+0x141/0x200
[ 667.125126][ T9805] ? __pfx_filldir64+0x10/0x10
[ 667.125134][ T9805] ? do_user_addr_fault+0x7fe/0x12f0
[ 667.125143][ T9805] do_syscall_64+0xc9/0x480
[ 667.125151][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 667.125158][ T9805] RIP: 0033:0x7fa8753b2fc9
[ 667.125164][ T9805] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 48
[ 667.125172][ T9805] RSP: 002b:00007ffe96f8e0f8 EFLAGS: 00000217 ORIG_RAX: 00000000000000d9
[ 667.125181][ T9805] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa8753b2fc9
[ 667.125185][ T9805] RDX: 0000000000000400 RSI: 00002000000063c0 RDI: 0000000000000004
[ 667.125190][ T9805] RBP: 00007ffe96f8e110 R08: 00007ffe96f8e110 R09: 00007ffe96f8e110
[ 667.125195][ T9805] R10: 0000000000000000 R11: 0000000000000217 R12: 0000556b1e3b4260
[ 667.125199][ T9805] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 667.125207][ T9805] </TASK>
[ 667.125210][ T9805]
[ 667.145632][ T9805] Allocated by task 9805:
[ 667.145991][ T9805] kasan_save_stack+0x20/0x40
[ 667.146352][ T9805] kasan_save_track+0x14/0x30
[ 667.146717][ T9805] __kasan_kmalloc+0xaa/0xb0
[ 667.147065][ T9805] __kmalloc_noprof+0x205/0x550
[ 667.147448][ T9805] hfsplus_find_init+0x95/0x1f0
[ 667.147813][ T9805] hfsplus_readdir+0x220/0xfc0
[ 667.148174][ T9805] iterate_dir+0x296/0xb20
[ 667.148549][ T9805] __x64_sys_getdents64+0x13c/0x2c0
[ 667.148937][ T9805] do_syscall_64+0xc9/0x480
[ 667.149291][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 667.149809][ T9805]
[ 667.150030][ T9805] The buggy address belongs to the object at ffff88802592f000
[ 667.150030][ T9805] which belongs to the cache kmalloc-2k of size 2048
[ 667.151282][ T9805] The buggy address is located 0 bytes to the right of
[ 667.151282][ T9805] allocated 1036-byte region [ffff88802592f000, ffff88802592f40c)
[ 667.1
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
gfs2: Validate i_depth for exhash directories
A fuzzer test introduced corruption that ends up with a depth of 0 in
dir_e_read(), causing an undefined shift by 32 at:
index = hash >> (32 - dip->i_depth);
As calculated in an open-coded way in dir_make_exhash(), the minimum
depth for an exhash directory is ilog2(sdp->sd_hash_ptrs) and 0 is
invalid as sdp->sd_hash_ptrs is fixed as sdp->bsize / 16 at mount time.
So we can avoid the undefined behaviour by checking for depth values
lower than the minimum in gfs2_dinode_in(). Values greater than the
maximum are already being checked for there.
Also switch the calculation in dir_make_exhash() to use ilog2() to
clarify how the depth is calculated.
Tested with the syzkaller repro.c and xfstests '-g quick'. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: core: Check for rtd == NULL in snd_soc_remove_pcm_runtime()
snd_soc_remove_pcm_runtime() might be called with rtd == NULL which will
leads to null pointer dereference.
This was reproduced with topology loading and marking a link as ignore
due to missing hardware component on the system.
On module removal the soc_tplg_remove_link() would call
snd_soc_remove_pcm_runtime() with rtd == NULL since the link was ignored,
no runtime was created. |
In the Linux kernel, the following vulnerability has been resolved:
fbdev: fix potential buffer overflow in do_register_framebuffer()
The current implementation may lead to buffer overflow when:
1. Unregistration creates NULL gaps in registered_fb[]
2. All array slots become occupied despite num_registered_fb < FB_MAX
3. The registration loop exceeds array bounds
Add boundary check to prevent registered_fb[FB_MAX] access. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: do not BUG when INLINE_DATA_FL lacks system.data xattr
A syzbot fuzzed image triggered a BUG_ON in ext4_update_inline_data()
when an inode had the INLINE_DATA_FL flag set but was missing the
system.data extended attribute.
Since this can happen due to a maiciouly fuzzed file system, we
shouldn't BUG, but rather, report it as a corrupted file system.
Add similar replacements of BUG_ON with EXT4_ERROR_INODE() ii
ext4_create_inline_data() and ext4_inline_data_truncate(). |
In the Linux kernel, the following vulnerability has been resolved:
scsi: libiscsi: Initialize iscsi_conn->dd_data only if memory is allocated
In case of an ib_fast_reg_mr allocation failure during iSER setup, the
machine hits a panic because iscsi_conn->dd_data is initialized
unconditionally, even when no memory is allocated (dd_size == 0). This
leads invalid pointer dereference during connection teardown.
Fix by setting iscsi_conn->dd_data only if memory is actually allocated.
Panic trace:
------------
iser: iser_create_fastreg_desc: Failed to allocate ib_fast_reg_mr err=-12
iser: iser_alloc_rx_descriptors: failed allocating rx descriptors / data buffers
BUG: unable to handle page fault for address: fffffffffffffff8
RIP: 0010:swake_up_locked.part.5+0xa/0x40
Call Trace:
complete+0x31/0x40
iscsi_iser_conn_stop+0x88/0xb0 [ib_iser]
iscsi_stop_conn+0x66/0xc0 [scsi_transport_iscsi]
iscsi_if_stop_conn+0x14a/0x150 [scsi_transport_iscsi]
iscsi_if_rx+0x1135/0x1834 [scsi_transport_iscsi]
? netlink_lookup+0x12f/0x1b0
? netlink_deliver_tap+0x2c/0x200
netlink_unicast+0x1ab/0x280
netlink_sendmsg+0x257/0x4f0
? _copy_from_user+0x29/0x60
sock_sendmsg+0x5f/0x70 |
In the Linux kernel, the following vulnerability has been resolved:
scsi: bfa: Double-free fix
When the bfad_im_probe() function fails during initialization, the memory
pointed to by bfad->im is freed without setting bfad->im to NULL.
Subsequently, during driver uninstallation, when the state machine enters
the bfad_sm_stopping state and calls the bfad_im_probe_undo() function,
it attempts to free the memory pointed to by bfad->im again, thereby
triggering a double-free vulnerability.
Set bfad->im to NULL if probing fails. |
In the Linux kernel, the following vulnerability has been resolved:
jfs: Regular file corruption check
The reproducer builds a corrupted file on disk with a negative i_size value.
Add a check when opening this file to avoid subsequent operation failures. |
In the Linux kernel, the following vulnerability has been resolved:
jfs: upper bound check of tree index in dbAllocAG
When computing the tree index in dbAllocAG, we never check if we are
out of bounds realative to the size of the stree.
This could happen in a scenario where the filesystem metadata are
corrupted. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Check for hdwq null ptr when cleaning up lpfc_vport structure
If a call to lpfc_sli4_read_rev() from lpfc_sli4_hba_setup() fails, the
resultant cleanup routine lpfc_sli4_vport_delete_fcp_xri_aborted() may
occur before sli4_hba.hdwqs are allocated. This may result in a null
pointer dereference when attempting to take the abts_io_buf_list_lock for
the first hardware queue. Fix by adding a null ptr check on
phba->sli4_hba.hdwq and early return because this situation means there
must have been an error during port initialization. |