Filtered by vendor Redhat
Subscriptions
Filtered by product Rhel Eus
Subscriptions
Total
3010 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2019-25162 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: i2c: Fix a potential use after free Free the adap structure only after we are done using it. This patch just moves the put_device() down a bit to avoid the use after free. [wsa: added comment to the code, added Fixes tag] | ||||
CVE-2024-21404 | 2 Microsoft, Redhat | 5 Asp.net Core, Visual Studio 2022, Enterprise Linux and 2 more | 2025-05-03 | 7.5 High |
.NET Denial of Service Vulnerability | ||||
CVE-2022-44638 | 4 Debian, Fedoraproject, Pixman and 1 more | 5 Debian Linux, Fedora, Pixman and 2 more | 2025-05-02 | 8.8 High |
In libpixman in Pixman before 0.42.2, there is an out-of-bounds write (aka heap-based buffer overflow) in rasterize_edges_8 due to an integer overflow in pixman_sample_floor_y. | ||||
CVE-2022-42919 | 3 Fedoraproject, Python, Redhat | 4 Fedora, Python, Enterprise Linux and 1 more | 2025-05-02 | 7.8 High |
Python 3.9.x before 3.9.16 and 3.10.x before 3.10.9 on Linux allows local privilege escalation in a non-default configuration. The Python multiprocessing library, when used with the forkserver start method on Linux, allows pickles to be deserialized from any user in the same machine local network namespace, which in many system configurations means any user on the same machine. Pickles can execute arbitrary code. Thus, this allows for local user privilege escalation to the user that any forkserver process is running as. Setting multiprocessing.util.abstract_sockets_supported to False is a workaround. The forkserver start method for multiprocessing is not the default start method. This issue is Linux specific because only Linux supports abstract namespace sockets. CPython before 3.9 does not make use of Linux abstract namespace sockets by default. Support for users manually specifying an abstract namespace socket was added as a bugfix in 3.7.8 and 3.8.3, but users would need to make specific uncommon API calls in order to do that in CPython before 3.9. | ||||
CVE-2022-40284 | 4 Debian, Fedoraproject, Redhat and 1 more | 9 Debian Linux, Fedora, Advanced Virtualization and 6 more | 2025-05-02 | 7.8 High |
A buffer overflow was discovered in NTFS-3G before 2022.10.3. Crafted metadata in an NTFS image can cause code execution. A local attacker can exploit this if the ntfs-3g binary is setuid root. A physically proximate attacker can exploit this if NTFS-3G software is configured to execute upon attachment of an external storage device. | ||||
CVE-2022-3821 | 3 Fedoraproject, Redhat, Systemd Project | 4 Fedora, Enterprise Linux, Rhel Eus and 1 more | 2025-05-02 | 5.5 Medium |
An off-by-one Error issue was discovered in Systemd in format_timespan() function of time-util.c. An attacker could supply specific values for time and accuracy that leads to buffer overrun in format_timespan(), leading to a Denial of Service. | ||||
CVE-2025-22869 | 2 Go, Redhat | 17 Ssh, Acm, Advanced Cluster Security and 14 more | 2025-05-01 | 7.5 High |
SSH servers which implement file transfer protocols are vulnerable to a denial of service attack from clients which complete the key exchange slowly, or not at all, causing pending content to be read into memory, but never transmitted. | ||||
CVE-2025-22868 | 2 Go, Redhat | 19 Jws, Acm, Advanced Cluster Security and 16 more | 2025-05-01 | 7.5 High |
An attacker can pass a malicious malformed token which causes unexpected memory to be consumed during parsing. | ||||
CVE-2022-43945 | 3 Linux, Netapp, Redhat | 14 Linux Kernel, Active Iq Unified Manager, H300s and 11 more | 2025-05-01 | 7.5 High |
The Linux kernel NFSD implementation prior to versions 5.19.17 and 6.0.2 are vulnerable to buffer overflow. NFSD tracks the number of pages held by each NFSD thread by combining the receive and send buffers of a remote procedure call (RPC) into a single array of pages. A client can force the send buffer to shrink by sending an RPC message over TCP with garbage data added at the end of the message. The RPC message with garbage data is still correctly formed according to the specification and is passed forward to handlers. Vulnerable code in NFSD is not expecting the oversized request and writes beyond the allocated buffer space. CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H | ||||
CVE-2023-5176 | 3 Debian, Mozilla, Redhat | 9 Debian Linux, Firefox, Firefox Esr and 6 more | 2025-05-01 | 9.8 Critical |
Memory safety bugs present in Firefox 117, Firefox ESR 115.2, and Thunderbird 115.2. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 118, Firefox ESR < 115.3, and Thunderbird < 115.3. | ||||
CVE-2021-44790 | 8 Apache, Apple, Debian and 5 more | 20 Http Server, Mac Os X, Macos and 17 more | 2025-05-01 | 9.8 Critical |
A carefully crafted request body can cause a buffer overflow in the mod_lua multipart parser (r:parsebody() called from Lua scripts). The Apache httpd team is not aware of an exploit for the vulnerabilty though it might be possible to craft one. This issue affects Apache HTTP Server 2.4.51 and earlier. | ||||
CVE-2023-27522 | 4 Apache, Debian, Redhat and 1 more | 6 Http Server, Debian Linux, Enterprise Linux and 3 more | 2025-05-01 | 7.5 High |
HTTP Response Smuggling vulnerability in Apache HTTP Server via mod_proxy_uwsgi. This issue affects Apache HTTP Server: from 2.4.30 through 2.4.55. Special characters in the origin response header can truncate/split the response forwarded to the client. | ||||
CVE-2022-45061 | 4 Fedoraproject, Netapp, Python and 1 more | 13 Fedora, Active Iq Unified Manager, Bootstrap Os and 10 more | 2025-05-01 | 7.5 High |
An issue was discovered in Python before 3.11.1. An unnecessary quadratic algorithm exists in one path when processing some inputs to the IDNA (RFC 3490) decoder, such that a crafted, unreasonably long name being presented to the decoder could lead to a CPU denial of service. Hostnames are often supplied by remote servers that could be controlled by a malicious actor; in such a scenario, they could trigger excessive CPU consumption on the client attempting to make use of an attacker-supplied supposed hostname. For example, the attack payload could be placed in the Location header of an HTTP response with status code 302. A fix is planned in 3.11.1, 3.10.9, 3.9.16, 3.8.16, and 3.7.16. | ||||
CVE-2022-45060 | 5 Debian, Fedoraproject, Redhat and 2 more | 11 Debian Linux, Fedora, Enterprise Linux and 8 more | 2025-05-01 | 7.5 High |
An HTTP Request Forgery issue was discovered in Varnish Cache 5.x and 6.x before 6.0.11, 7.x before 7.1.2, and 7.2.x before 7.2.1. An attacker may introduce characters through HTTP/2 pseudo-headers that are invalid in the context of an HTTP/1 request line, causing the Varnish server to produce invalid HTTP/1 requests to the backend. This could, in turn, be used to exploit vulnerabilities in a server behind the Varnish server. Note: the 6.0.x LTS series (before 6.0.11) is affected. | ||||
CVE-2024-27982 | 2 Nodejs, Redhat | 3 Node.js, Enterprise Linux, Rhel Eus | 2025-04-30 | 6.1 Medium |
The team has identified a critical vulnerability in the http server of the most recent version of Node, where malformed headers can lead to HTTP request smuggling. Specifically, if a space is placed before a content-length header, it is not interpreted correctly, enabling attackers to smuggle in a second request within the body of the first. | ||||
CVE-2024-27983 | 2 Nodejs, Redhat | 7 Nodejs, Enterprise Linux, Rhel Aus and 4 more | 2025-04-30 | 7.5 High |
An attacker can make the Node.js HTTP/2 server completely unavailable by sending a small amount of HTTP/2 frames packets with a few HTTP/2 frames inside. It is possible to leave some data in nghttp2 memory after reset when headers with HTTP/2 CONTINUATION frame are sent to the server and then a TCP connection is abruptly closed by the client triggering the Http2Session destructor while header frames are still being processed (and stored in memory) causing a race condition. | ||||
CVE-2024-22025 | 1 Redhat | 3 Enterprise Linux, Rhel E4s, Rhel Eus | 2025-04-30 | 6.5 Medium |
A vulnerability in Node.js has been identified, allowing for a Denial of Service (DoS) attack through resource exhaustion when using the fetch() function to retrieve content from an untrusted URL. The vulnerability stems from the fact that the fetch() function in Node.js always decodes Brotli, making it possible for an attacker to cause resource exhaustion when fetching content from an untrusted URL. An attacker controlling the URL passed into fetch() can exploit this vulnerability to exhaust memory, potentially leading to process termination, depending on the system configuration. | ||||
CVE-2024-22019 | 4 Netapp, Node.js, Nodejs and 1 more | 6 Astra Control Center, Node.js, Node.js and 3 more | 2025-04-30 | 7.5 High |
A vulnerability in Node.js HTTP servers allows an attacker to send a specially crafted HTTP request with chunked encoding, leading to resource exhaustion and denial of service (DoS). The server reads an unbounded number of bytes from a single connection, exploiting the lack of limitations on chunk extension bytes. The issue can cause CPU and network bandwidth exhaustion, bypassing standard safeguards like timeouts and body size limits. | ||||
CVE-2024-21892 | 3 Linux, Nodejs, Redhat | 4 Linux Kernel, Node.js, Enterprise Linux and 1 more | 2025-04-30 | 7.8 High |
On Linux, Node.js ignores certain environment variables if those may have been set by an unprivileged user while the process is running with elevated privileges with the only exception of CAP_NET_BIND_SERVICE. Due to a bug in the implementation of this exception, Node.js incorrectly applies this exception even when certain other capabilities have been set. This allows unprivileged users to inject code that inherits the process's elevated privileges. | ||||
CVE-2023-46809 | 2 Nodejs, Redhat | 3 Nodejs, Enterprise Linux, Rhel Eus | 2025-04-30 | 7.4 High |
Node.js versions which bundle an unpatched version of OpenSSL or run against a dynamically linked version of OpenSSL which are unpatched are vulnerable to the Marvin Attack - https://people.redhat.com/~hkario/marvin/, if PCKS #1 v1.5 padding is allowed when performing RSA descryption using a private key. |