CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: reject TDLS operations when station is not associated
syzbot triggered a WARN in ieee80211_tdls_oper() by sending
NL80211_TDLS_ENABLE_LINK immediately after NL80211_CMD_CONNECT,
before association completed and without prior TDLS setup.
This left internal state like sdata->u.mgd.tdls_peer uninitialized,
leading to a WARN_ON() in code paths that assumed it was valid.
Reject the operation early if not in station mode or not associated. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix WARN_ON for monitor mode on some devices
On devices without WANT_MONITOR_VIF (and probably without
channel context support) we get a WARN_ON for changing the
per-link setting of a monitor interface.
Since we already skip AP_VLAN interfaces and MONITOR with
WANT_MONITOR_VIF and/or NO_VIRTUAL_MONITOR should update
the settings, catch this in the link change code instead
of the warning. |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: add a retry logic in net6_rt_notify()
inet6_rt_notify() can be called under RCU protection only.
This means the route could be changed concurrently
and rt6_fill_node() could return -EMSGSIZE.
Re-size the skb when this happens and retry, removing
one WARN_ON() that syzbot was able to trigger:
WARNING: CPU: 3 PID: 6291 at net/ipv6/route.c:6342 inet6_rt_notify+0x475/0x4b0 net/ipv6/route.c:6342
Modules linked in:
CPU: 3 UID: 0 PID: 6291 Comm: syz.0.77 Not tainted 6.16.0-rc7-syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:inet6_rt_notify+0x475/0x4b0 net/ipv6/route.c:6342
Code: fc ff ff e8 6d 52 ea f7 e9 47 fc ff ff 48 8b 7c 24 08 4c 89 04 24 e8 5a 52 ea f7 4c 8b 04 24 e9 94 fd ff ff e8 9c fe 84 f7 90 <0f> 0b 90 e9 bd fd ff ff e8 6e 52 ea f7 e9 bb fb ff ff 48 89 df e8
RSP: 0018:ffffc900035cf1d8 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffffc900035cf540 RCX: ffffffff8a36e790
RDX: ffff88802f7e8000 RSI: ffffffff8a36e9d4 RDI: 0000000000000005
RBP: ffff88803c230f00 R08: 0000000000000005 R09: 00000000ffffffa6
R10: 00000000ffffffa6 R11: 0000000000000001 R12: 00000000ffffffa6
R13: 0000000000000900 R14: ffff888032ea4100 R15: 0000000000000000
FS: 00007fac7b89a6c0(0000) GS:ffff8880d6a20000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fac7b899f98 CR3: 0000000034b3f000 CR4: 0000000000352ef0
Call Trace:
<TASK>
ip6_route_mpath_notify+0xde/0x280 net/ipv6/route.c:5356
ip6_route_multipath_add+0x1181/0x1bd0 net/ipv6/route.c:5536
inet6_rtm_newroute+0xe4/0x1a0 net/ipv6/route.c:5647
rtnetlink_rcv_msg+0x95e/0xe90 net/core/rtnetlink.c:6944
netlink_rcv_skb+0x155/0x420 net/netlink/af_netlink.c:2552
netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline]
netlink_unicast+0x58d/0x850 net/netlink/af_netlink.c:1346
netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1896
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg net/socket.c:727 [inline]
____sys_sendmsg+0xa95/0xc70 net/socket.c:2566
___sys_sendmsg+0x134/0x1d0 net/socket.c:2620 |
In the Linux kernel, the following vulnerability has been resolved:
pinmux: fix race causing mux_owner NULL with active mux_usecount
commit 5a3e85c3c397 ("pinmux: Use sequential access to access
desc->pinmux data") tried to address the issue when two client of the
same gpio calls pinctrl_select_state() for the same functionality, was
resulting in NULL pointer issue while accessing desc->mux_owner.
However, issue was not completely fixed due to the way it was handled
and it can still result in the same NULL pointer.
The issue occurs due to the following interleaving:
cpu0 (process A) cpu1 (process B)
pin_request() { pin_free() {
mutex_lock()
desc->mux_usecount--; //becomes 0
..
mutex_unlock()
mutex_lock(desc->mux)
desc->mux_usecount++; // becomes 1
desc->mux_owner = owner;
mutex_unlock(desc->mux)
mutex_lock(desc->mux)
desc->mux_owner = NULL;
mutex_unlock(desc->mux)
This sequence leads to a state where the pin appears to be in use
(`mux_usecount == 1`) but has no owner (`mux_owner == NULL`), which can
cause NULL pointer on next pin_request on the same pin.
Ensure that updates to mux_usecount and mux_owner are performed
atomically under the same lock. Only clear mux_owner when mux_usecount
reaches zero and no new owner has been assigned. |
In the Linux kernel, the following vulnerability has been resolved:
clk: imx95-blk-ctl: Fix synchronous abort
When enabling runtime PM for clock suppliers that also belong to a power
domain, the following crash is thrown:
error: synchronous external abort: 0000000096000010 [#1] PREEMPT SMP
Workqueue: events_unbound deferred_probe_work_func
pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : clk_mux_get_parent+0x60/0x90
lr : clk_core_reparent_orphans_nolock+0x58/0xd8
Call trace:
clk_mux_get_parent+0x60/0x90
clk_core_reparent_orphans_nolock+0x58/0xd8
of_clk_add_hw_provider.part.0+0x90/0x100
of_clk_add_hw_provider+0x1c/0x38
imx95_bc_probe+0x2e0/0x3f0
platform_probe+0x70/0xd8
Enabling runtime PM without explicitly resuming the device caused
the power domain cut off after clk_register() is called. As a result,
a crash happens when the clock hardware provider is added and attempts
to access the BLK_CTL register.
Fix this by using devm_pm_runtime_enable() instead of pm_runtime_enable()
and getting rid of the pm_runtime_disable() in the cleanup path. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb: scarlett2: Fix missing NULL check
scarlett2_input_select_ctl_info() sets up the string arrays allocated
via kasprintf(), but it misses NULL checks, which may lead to NULL
dereference Oops. Let's add the proper NULL check. |
In the Linux kernel, the following vulnerability has been resolved:
vdpa/mlx5: Fix release of uninitialized resources on error path
The commit in the fixes tag made sure that mlx5_vdpa_free()
is the single entrypoint for removing the vdpa device resources
added in mlx5_vdpa_dev_add(), even in the cleanup path of
mlx5_vdpa_dev_add().
This means that all functions from mlx5_vdpa_free() should be able to
handle uninitialized resources. This was not the case though:
mlx5_vdpa_destroy_mr_resources() and mlx5_cmd_cleanup_async_ctx()
were not able to do so. This caused the splat below when adding
a vdpa device without a MAC address.
This patch fixes these remaining issues:
- Makes mlx5_vdpa_destroy_mr_resources() return early if called on
uninitialized resources.
- Moves mlx5_cmd_init_async_ctx() early on during device addition
because it can't fail. This means that mlx5_cmd_cleanup_async_ctx()
also can't fail. To mirror this, move the call site of
mlx5_cmd_cleanup_async_ctx() in mlx5_vdpa_free().
An additional comment was added in mlx5_vdpa_free() to document
the expectations of functions called from this context.
Splat:
mlx5_core 0000:b5:03.2: mlx5_vdpa_dev_add:3950:(pid 2306) warning: No mac address provisioned?
------------[ cut here ]------------
WARNING: CPU: 13 PID: 2306 at kernel/workqueue.c:4207 __flush_work+0x9a/0xb0
[...]
Call Trace:
<TASK>
? __try_to_del_timer_sync+0x61/0x90
? __timer_delete_sync+0x2b/0x40
mlx5_vdpa_destroy_mr_resources+0x1c/0x40 [mlx5_vdpa]
mlx5_vdpa_free+0x45/0x160 [mlx5_vdpa]
vdpa_release_dev+0x1e/0x50 [vdpa]
device_release+0x31/0x90
kobject_cleanup+0x37/0x130
mlx5_vdpa_dev_add+0x327/0x890 [mlx5_vdpa]
vdpa_nl_cmd_dev_add_set_doit+0x2c1/0x4d0 [vdpa]
genl_family_rcv_msg_doit+0xd8/0x130
genl_family_rcv_msg+0x14b/0x220
? __pfx_vdpa_nl_cmd_dev_add_set_doit+0x10/0x10 [vdpa]
genl_rcv_msg+0x47/0xa0
? __pfx_genl_rcv_msg+0x10/0x10
netlink_rcv_skb+0x53/0x100
genl_rcv+0x24/0x40
netlink_unicast+0x27b/0x3b0
netlink_sendmsg+0x1f7/0x430
__sys_sendto+0x1fa/0x210
? ___pte_offset_map+0x17/0x160
? next_uptodate_folio+0x85/0x2b0
? percpu_counter_add_batch+0x51/0x90
? filemap_map_pages+0x515/0x660
__x64_sys_sendto+0x20/0x30
do_syscall_64+0x7b/0x2c0
? do_read_fault+0x108/0x220
? do_pte_missing+0x14a/0x3e0
? __handle_mm_fault+0x321/0x730
? count_memcg_events+0x13f/0x180
? handle_mm_fault+0x1fb/0x2d0
? do_user_addr_fault+0x20c/0x700
? syscall_exit_work+0x104/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f0c25b0feca
[...]
---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
PCI: pnv_php: Fix surprise plug detection and recovery
The existing PowerNV hotplug code did not handle surprise plug events
correctly, leading to a complete failure of the hotplug system after device
removal and a required reboot to detect new devices.
This comes down to two issues:
1) When a device is surprise removed, often the bridge upstream
port will cause a PE freeze on the PHB. If this freeze is not
cleared, the MSI interrupts from the bridge hotplug notification
logic will not be received by the kernel, stalling all plug events
on all slots associated with the PE.
2) When a device is removed from a slot, regardless of surprise or
programmatic removal, the associated PHB/PE ls left frozen.
If this freeze is not cleared via a fundamental reset, skiboot
is unable to clear the freeze and cannot retrain / rescan the
slot. This also requires a reboot to clear the freeze and redetect
the device in the slot.
Issue the appropriate unfreeze and rescan commands on hotplug events,
and don't oops on hotplug if pci_bus_to_OF_node() returns NULL.
[bhelgaas: tidy comments] |
In the Linux kernel, the following vulnerability has been resolved:
net: drop UFO packets in udp_rcv_segment()
When sending a packet with virtio_net_hdr to tun device, if the gso_type
in virtio_net_hdr is SKB_GSO_UDP and the gso_size is less than udphdr
size, below crash may happen.
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:4572!
Oops: invalid opcode: 0000 [#1] SMP NOPTI
CPU: 0 UID: 0 PID: 62 Comm: mytest Not tainted 6.16.0-rc7 #203 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:skb_pull_rcsum+0x8e/0xa0
Code: 00 00 5b c3 cc cc cc cc 8b 93 88 00 00 00 f7 da e8 37 44 38 00 f7 d8 89 83 88 00 00 00 48 8b 83 c8 00 00 00 5b c3 cc cc cc cc <0f> 0b 0f 0b 66 66 2e 0f 1f 84 00 000
RSP: 0018:ffffc900001fba38 EFLAGS: 00000297
RAX: 0000000000000004 RBX: ffff8880040c1000 RCX: ffffc900001fb948
RDX: ffff888003e6d700 RSI: 0000000000000008 RDI: ffff88800411a062
RBP: ffff8880040c1000 R08: 0000000000000000 R09: 0000000000000001
R10: ffff888003606c00 R11: 0000000000000001 R12: 0000000000000000
R13: ffff888004060900 R14: ffff888004050000 R15: ffff888004060900
FS: 000000002406d3c0(0000) GS:ffff888084a19000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000040 CR3: 0000000004007000 CR4: 00000000000006f0
Call Trace:
<TASK>
udp_queue_rcv_one_skb+0x176/0x4b0 net/ipv4/udp.c:2445
udp_queue_rcv_skb+0x155/0x1f0 net/ipv4/udp.c:2475
udp_unicast_rcv_skb+0x71/0x90 net/ipv4/udp.c:2626
__udp4_lib_rcv+0x433/0xb00 net/ipv4/udp.c:2690
ip_protocol_deliver_rcu+0xa6/0x160 net/ipv4/ip_input.c:205
ip_local_deliver_finish+0x72/0x90 net/ipv4/ip_input.c:233
ip_sublist_rcv_finish+0x5f/0x70 net/ipv4/ip_input.c:579
ip_sublist_rcv+0x122/0x1b0 net/ipv4/ip_input.c:636
ip_list_rcv+0xf7/0x130 net/ipv4/ip_input.c:670
__netif_receive_skb_list_core+0x21d/0x240 net/core/dev.c:6067
netif_receive_skb_list_internal+0x186/0x2b0 net/core/dev.c:6210
napi_complete_done+0x78/0x180 net/core/dev.c:6580
tun_get_user+0xa63/0x1120 drivers/net/tun.c:1909
tun_chr_write_iter+0x65/0xb0 drivers/net/tun.c:1984
vfs_write+0x300/0x420 fs/read_write.c:593
ksys_write+0x60/0xd0 fs/read_write.c:686
do_syscall_64+0x50/0x1c0 arch/x86/entry/syscall_64.c:63
</TASK>
To trigger gso segment in udp_queue_rcv_skb(), we should also set option
UDP_ENCAP_ESPINUDP to enable udp_sk(sk)->encap_rcv. When the encap_rcv
hook return 1 in udp_queue_rcv_one_skb(), udp_csum_pull_header() will try
to pull udphdr, but the skb size has been segmented to gso size, which
leads to this crash.
Previous commit cf329aa42b66 ("udp: cope with UDP GRO packet misdirection")
introduces segmentation in UDP receive path only for GRO, which was never
intended to be used for UFO, so drop UFO packets in udp_rcv_segment(). |
In the Linux kernel, the following vulnerability has been resolved:
vsock: Do not allow binding to VMADDR_PORT_ANY
It is possible for a vsock to autobind to VMADDR_PORT_ANY. This can
cause a use-after-free when a connection is made to the bound socket.
The socket returned by accept() also has port VMADDR_PORT_ANY but is not
on the list of unbound sockets. Binding it will result in an extra
refcount decrement similar to the one fixed in fcdd2242c023 (vsock: Keep
the binding until socket destruction).
Modify the check in __vsock_bind_connectible() to also prevent binding
to VMADDR_PORT_ANY. |
In the Linux kernel, the following vulnerability has been resolved:
net/packet: fix a race in packet_set_ring() and packet_notifier()
When packet_set_ring() releases po->bind_lock, another thread can
run packet_notifier() and process an NETDEV_UP event.
This race and the fix are both similar to that of commit 15fe076edea7
("net/packet: fix a race in packet_bind() and packet_notifier()").
There too the packet_notifier NETDEV_UP event managed to run while a
po->bind_lock critical section had to be temporarily released. And
the fix was similarly to temporarily set po->num to zero to keep
the socket unhooked until the lock is retaken.
The po->bind_lock in packet_set_ring and packet_notifier precede the
introduction of git history. |
In the Linux kernel, the following vulnerability has been resolved:
PM / devfreq: Check governor before using governor->name
Commit 96ffcdf239de ("PM / devfreq: Remove redundant governor_name from
struct devfreq") removes governor_name and uses governor->name to replace
it. But devfreq->governor may be NULL and directly using
devfreq->governor->name may cause null pointer exception. Move the check of
governor to before using governor->name. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Avoid accessing uninitialized arvif->ar during beacon miss
During beacon miss handling, ath12k driver iterates over active virtual
interfaces (vifs) and attempts to access the radio object (ar) via
arvif->deflink->ar.
However, after commit aa80f12f3bed ("wifi: ath12k: defer vdev creation for
MLO"), arvif is linked to a radio only after vdev creation, typically when
a channel is assigned or a scan is requested.
For P2P capable devices, a default P2P interface is created by
wpa_supplicant along with regular station interfaces, these serve as dummy
interfaces for P2P-capable stations, lack an associated netdev and initiate
frequent scans to discover neighbor p2p devices. When a scan is initiated
on such P2P vifs, driver selects destination radio (ar) based on scan
frequency, creates a scan vdev, and attaches arvif to the radio. Once the
scan completes or is aborted, the scan vdev is deleted, detaching arvif
from the radio and leaving arvif->ar uninitialized.
While handling beacon miss for station interfaces, P2P interface is also
encountered in the vif iteration and ath12k_mac_handle_beacon_miss_iter()
tries to dereference the uninitialized arvif->deflink->ar.
Fix this by verifying that vdev is created for the arvif before accessing
its ar during beacon miss handling and similar vif iterator callbacks.
==========================================================================
wlp6s0: detected beacon loss from AP (missed 7 beacons) - probing
KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017]
CPU: 5 UID: 0 PID: 0 Comm: swapper/5 Not tainted 6.16.0-rc1-wt-ath+ #2 PREEMPT(full)
RIP: 0010:ath12k_mac_handle_beacon_miss_iter+0xb5/0x1a0 [ath12k]
Call Trace:
__iterate_interfaces+0x11a/0x410 [mac80211]
ieee80211_iterate_active_interfaces_atomic+0x61/0x140 [mac80211]
ath12k_mac_handle_beacon_miss+0xa1/0xf0 [ath12k]
ath12k_roam_event+0x393/0x560 [ath12k]
ath12k_wmi_op_rx+0x1486/0x28c0 [ath12k]
ath12k_htc_process_trailer.isra.0+0x2fb/0x620 [ath12k]
ath12k_htc_rx_completion_handler+0x448/0x830 [ath12k]
ath12k_ce_recv_process_cb+0x549/0x9e0 [ath12k]
ath12k_ce_per_engine_service+0xbe/0xf0 [ath12k]
ath12k_pci_ce_workqueue+0x69/0x120 [ath12k]
process_one_work+0xe3a/0x1430
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.1.c5-00284.1-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Pass ab pointer directly to ath12k_dp_tx_get_encap_type()
In ath12k_dp_tx_get_encap_type(), the arvif parameter is only used to
retrieve the ab pointer. In vdev delete sequence the arvif->ar could
become NULL and that would trigger kernel panic.
Since the caller ath12k_dp_tx() already has a valid ab pointer, pass it
directly to avoid panic and unnecessary dereferencing.
PC points to "ath12k_dp_tx+0x228/0x988 [ath12k]"
LR points to "ath12k_dp_tx+0xc8/0x988 [ath12k]".
The Backtrace obtained is as follows:
ath12k_dp_tx+0x228/0x988 [ath12k]
ath12k_mac_tx_check_max_limit+0x608/0x920 [ath12k]
ieee80211_process_measurement_req+0x320/0x348 [mac80211]
ieee80211_tx_dequeue+0x9ac/0x1518 [mac80211]
ieee80211_tx_dequeue+0xb14/0x1518 [mac80211]
ieee80211_tx_prepare_skb+0x224/0x254 [mac80211]
ieee80211_xmit+0xec/0x100 [mac80211]
__ieee80211_subif_start_xmit+0xc50/0xf40 [mac80211]
ieee80211_subif_start_xmit+0x2e8/0x308 [mac80211]
netdev_start_xmit+0x150/0x18c
dev_hard_start_xmit+0x74/0xc0
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtl818x: Kill URBs before clearing tx status queue
In rtl8187_stop() move the call of usb_kill_anchored_urbs() before clearing
b_tx_status.queue. This change prevents callbacks from using already freed
skb due to anchor was not killed before freeing such skb.
BUG: kernel NULL pointer dereference, address: 0000000000000080
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 7 UID: 0 PID: 0 Comm: swapper/7 Not tainted 6.15.0 #8 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
RIP: 0010:ieee80211_tx_status_irqsafe+0x21/0xc0 [mac80211]
Call Trace:
<IRQ>
rtl8187_tx_cb+0x116/0x150 [rtl8187]
__usb_hcd_giveback_urb+0x9d/0x120
usb_giveback_urb_bh+0xbb/0x140
process_one_work+0x19b/0x3c0
bh_worker+0x1a7/0x210
tasklet_action+0x10/0x30
handle_softirqs+0xf0/0x340
__irq_exit_rcu+0xcd/0xf0
common_interrupt+0x85/0xa0
</IRQ>
Tested on RTL8187BvE device.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
In the Linux kernel, the following vulnerability has been resolved:
iwlwifi: Add missing check for alloc_ordered_workqueue
Add check for the return value of alloc_ordered_workqueue since it may
return NULL pointer. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: clear initialized flag for deinit-ed srng lists
In a number of cases we see kernel panics on resume due
to ath11k kernel page fault, which happens under the
following circumstances:
1) First ath11k_hal_dump_srng_stats() call
Last interrupt received for each group:
ath11k_pci 0000:01:00.0: group_id 0 22511ms before
ath11k_pci 0000:01:00.0: group_id 1 14440788ms before
[..]
ath11k_pci 0000:01:00.0: failed to receive control response completion, polling..
ath11k_pci 0000:01:00.0: Service connect timeout
ath11k_pci 0000:01:00.0: failed to connect to HTT: -110
ath11k_pci 0000:01:00.0: failed to start core: -110
ath11k_pci 0000:01:00.0: firmware crashed: MHI_CB_EE_RDDM
ath11k_pci 0000:01:00.0: already resetting count 2
ath11k_pci 0000:01:00.0: failed to wait wlan mode request (mode 4): -110
ath11k_pci 0000:01:00.0: qmi failed to send wlan mode off: -110
ath11k_pci 0000:01:00.0: failed to reconfigure driver on crash recovery
[..]
2) At this point reconfiguration fails (we have 2 resets) and
ath11k_core_reconfigure_on_crash() calls ath11k_hal_srng_deinit()
which destroys srng lists. However, it does not reset per-list
->initialized flag.
3) Second ath11k_hal_dump_srng_stats() call sees stale ->initialized
flag and attempts to dump srng stats:
Last interrupt received for each group:
ath11k_pci 0000:01:00.0: group_id 0 66785ms before
ath11k_pci 0000:01:00.0: group_id 1 14485062ms before
ath11k_pci 0000:01:00.0: group_id 2 14485062ms before
ath11k_pci 0000:01:00.0: group_id 3 14485062ms before
ath11k_pci 0000:01:00.0: group_id 4 14780845ms before
ath11k_pci 0000:01:00.0: group_id 5 14780845ms before
ath11k_pci 0000:01:00.0: group_id 6 14485062ms before
ath11k_pci 0000:01:00.0: group_id 7 66814ms before
ath11k_pci 0000:01:00.0: group_id 8 68997ms before
ath11k_pci 0000:01:00.0: group_id 9 67588ms before
ath11k_pci 0000:01:00.0: group_id 10 69511ms before
BUG: unable to handle page fault for address: ffffa007404eb010
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 100000067 P4D 100000067 PUD 10022d067 PMD 100b01067 PTE 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:ath11k_hal_dump_srng_stats+0x2b4/0x3b0 [ath11k]
Call Trace:
<TASK>
? __die_body+0xae/0xb0
? page_fault_oops+0x381/0x3e0
? exc_page_fault+0x69/0xa0
? asm_exc_page_fault+0x22/0x30
? ath11k_hal_dump_srng_stats+0x2b4/0x3b0 [ath11k (HASH:6cea 4)]
ath11k_qmi_driver_event_work+0xbd/0x1050 [ath11k (HASH:6cea 4)]
worker_thread+0x389/0x930
kthread+0x149/0x170
Clear per-list ->initialized flag in ath11k_hal_srng_deinit(). |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: fix double free in 'hci_discovery_filter_clear()'
Function 'hci_discovery_filter_clear()' frees 'uuids' array and then
sets it to NULL. There is a tiny chance of the following race:
'hci_cmd_sync_work()'
'update_passive_scan_sync()'
'hci_update_passive_scan_sync()'
'hci_discovery_filter_clear()'
kfree(uuids);
<-------------------------preempted-------------------------------->
'start_service_discovery()'
'hci_discovery_filter_clear()'
kfree(uuids); // DOUBLE FREE
<-------------------------preempted-------------------------------->
uuids = NULL;
To fix it let's add locking around 'kfree()' call and NULL pointer
assignment. Otherwise the following backtrace fires:
[ ] ------------[ cut here ]------------
[ ] kernel BUG at mm/slub.c:547!
[ ] Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
[ ] CPU: 3 UID: 0 PID: 246 Comm: bluetoothd Tainted: G O 6.12.19-kernel #1
[ ] Tainted: [O]=OOT_MODULE
[ ] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ ] pc : __slab_free+0xf8/0x348
[ ] lr : __slab_free+0x48/0x348
...
[ ] Call trace:
[ ] __slab_free+0xf8/0x348
[ ] kfree+0x164/0x27c
[ ] start_service_discovery+0x1d0/0x2c0
[ ] hci_sock_sendmsg+0x518/0x924
[ ] __sock_sendmsg+0x54/0x60
[ ] sock_write_iter+0x98/0xf8
[ ] do_iter_readv_writev+0xe4/0x1c8
[ ] vfs_writev+0x128/0x2b0
[ ] do_writev+0xfc/0x118
[ ] __arm64_sys_writev+0x20/0x2c
[ ] invoke_syscall+0x68/0xf0
[ ] el0_svc_common.constprop.0+0x40/0xe0
[ ] do_el0_svc+0x1c/0x28
[ ] el0_svc+0x30/0xd0
[ ] el0t_64_sync_handler+0x100/0x12c
[ ] el0t_64_sync+0x194/0x198
[ ] Code: 8b0002e6 eb17031f 54fffbe1 d503201f (d4210000)
[ ] ---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_devcd_dump: fix out-of-bounds via dev_coredumpv
Currently both dev_coredumpv and skb_put_data in hci_devcd_dump use
hdev->dump.head. However, dev_coredumpv can free the buffer. From
dev_coredumpm_timeout documentation, which is used by dev_coredumpv:
> Creates a new device coredump for the given device. If a previous one hasn't
> been read yet, the new coredump is discarded. The data lifetime is determined
> by the device coredump framework and when it is no longer needed the @free
> function will be called to free the data.
If the data has not been read by the userspace yet, dev_coredumpv will
discard new buffer, freeing hdev->dump.head. This leads to
vmalloc-out-of-bounds error when skb_put_data tries to access
hdev->dump.head.
A crash report from syzbot illustrates this:
==================================================================
BUG: KASAN: vmalloc-out-of-bounds in skb_put_data
include/linux/skbuff.h:2752 [inline]
BUG: KASAN: vmalloc-out-of-bounds in hci_devcd_dump+0x142/0x240
net/bluetooth/coredump.c:258
Read of size 140 at addr ffffc90004ed5000 by task kworker/u9:2/5844
CPU: 1 UID: 0 PID: 5844 Comm: kworker/u9:2 Not tainted
6.14.0-syzkaller-10892-g4e82c87058f4 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 02/12/2025
Workqueue: hci0 hci_devcd_timeout
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189
__asan_memcpy+0x23/0x60 mm/kasan/shadow.c:105
skb_put_data include/linux/skbuff.h:2752 [inline]
hci_devcd_dump+0x142/0x240 net/bluetooth/coredump.c:258
hci_devcd_timeout+0xb5/0x2e0 net/bluetooth/coredump.c:413
process_one_work+0x9cc/0x1b70 kernel/workqueue.c:3238
process_scheduled_works kernel/workqueue.c:3319 [inline]
worker_thread+0x6c8/0xf10 kernel/workqueue.c:3400
kthread+0x3c2/0x780 kernel/kthread.c:464
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:153
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
The buggy address ffffc90004ed5000 belongs to a vmalloc virtual mapping
Memory state around the buggy address:
ffffc90004ed4f00: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90004ed4f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
>ffffc90004ed5000: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
^
ffffc90004ed5080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90004ed5100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
==================================================================
To avoid this issue, reorder dev_coredumpv to be called after
skb_put_data that does not free the data. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Remove skb secpath if xfrm state is not found
Hardware returns a unique identifier for a decrypted packet's xfrm
state, this state is looked up in an xarray. However, the state might
have been freed by the time of this lookup.
Currently, if the state is not found, only a counter is incremented.
The secpath (sp) extension on the skb is not removed, resulting in
sp->len becoming 0.
Subsequently, functions like __xfrm_policy_check() attempt to access
fields such as xfrm_input_state(skb)->xso.type (which dereferences
sp->xvec[sp->len - 1]) without first validating sp->len. This leads to
a crash when dereferencing an invalid state pointer.
This patch prevents the crash by explicitly removing the secpath
extension from the skb if the xfrm state is not found after hardware
decryption. This ensures downstream functions do not operate on a
zero-length secpath.
BUG: unable to handle page fault for address: ffffffff000002c8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 282e067 P4D 282e067 PUD 0
Oops: Oops: 0000 [#1] SMP
CPU: 12 UID: 0 PID: 0 Comm: swapper/12 Not tainted 6.15.0-rc7_for_upstream_min_debug_2025_05_27_22_44 #1 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:__xfrm_policy_check+0x61a/0xa30
Code: b6 77 7f 83 e6 02 74 14 4d 8b af d8 00 00 00 41 0f b6 45 05 c1 e0 03 48 98 49 01 c5 41 8b 45 00 83 e8 01 48 98 49 8b 44 c5 10 <0f> b6 80 c8 02 00 00 83 e0 0c 3c 04 0f 84 0c 02 00 00 31 ff 80 fa
RSP: 0018:ffff88885fb04918 EFLAGS: 00010297
RAX: ffffffff00000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 0000000000000002 RSI: 0000000000000002 RDI: 0000000000000000
RBP: ffffffff8311af80 R08: 0000000000000020 R09: 00000000c2eda353
R10: ffff88812be2bbc8 R11: 000000001faab533 R12: ffff88885fb049c8
R13: ffff88812be2bbc8 R14: 0000000000000000 R15: ffff88811896ae00
FS: 0000000000000000(0000) GS:ffff8888dca82000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffff000002c8 CR3: 0000000243050002 CR4: 0000000000372eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<IRQ>
? try_to_wake_up+0x108/0x4c0
? udp4_lib_lookup2+0xbe/0x150
? udp_lib_lport_inuse+0x100/0x100
? __udp4_lib_lookup+0x2b0/0x410
__xfrm_policy_check2.constprop.0+0x11e/0x130
udp_queue_rcv_one_skb+0x1d/0x530
udp_unicast_rcv_skb+0x76/0x90
__udp4_lib_rcv+0xa64/0xe90
ip_protocol_deliver_rcu+0x20/0x130
ip_local_deliver_finish+0x75/0xa0
ip_local_deliver+0xc1/0xd0
? ip_protocol_deliver_rcu+0x130/0x130
ip_sublist_rcv+0x1f9/0x240
? ip_rcv_finish_core+0x430/0x430
ip_list_rcv+0xfc/0x130
__netif_receive_skb_list_core+0x181/0x1e0
netif_receive_skb_list_internal+0x200/0x360
? mlx5e_build_rx_skb+0x1bc/0xda0 [mlx5_core]
gro_receive_skb+0xfd/0x210
mlx5e_handle_rx_cqe_mpwrq+0x141/0x280 [mlx5_core]
mlx5e_poll_rx_cq+0xcc/0x8e0 [mlx5_core]
? mlx5e_handle_rx_dim+0x91/0xd0 [mlx5_core]
mlx5e_napi_poll+0x114/0xab0 [mlx5_core]
__napi_poll+0x25/0x170
net_rx_action+0x32d/0x3a0
? mlx5_eq_comp_int+0x8d/0x280 [mlx5_core]
? notifier_call_chain+0x33/0xa0
handle_softirqs+0xda/0x250
irq_exit_rcu+0x6d/0xc0
common_interrupt+0x81/0xa0
</IRQ> |