| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| GitLab has remediated an issue in GitLab CE/EE affecting all versions from 16.9 before 18.3.6, 18.4 before 18.4.4, and 18.5 before 18.5.2 that could have allowed an authenticated attacker to cause a denial of service condition by submitting specially crafted markdown content with nested formatting patterns. |
| A vulnerability was found in code-projects Email Logging Interface 2.0. Affected is an unknown function of the file signup.cpp. The manipulation of the argument Username results in path traversal: '../filedir'. The attack is only possible with local access. The exploit has been made public and could be used. |
| In the Linux kernel, the following vulnerability has been resolved:
IB/mlx5: Fix potential deadlock in MR deregistration
The issue arises when kzalloc() is invoked while holding umem_mutex or
any other lock acquired under umem_mutex. This is problematic because
kzalloc() can trigger fs_reclaim_aqcuire(), which may, in turn, invoke
mmu_notifier_invalidate_range_start(). This function can lead to
mlx5_ib_invalidate_range(), which attempts to acquire umem_mutex again,
resulting in a deadlock.
The problematic flow:
CPU0 | CPU1
---------------------------------------|------------------------------------------------
mlx5_ib_dereg_mr() |
→ revoke_mr() |
→ mutex_lock(&umem_odp->umem_mutex) |
| mlx5_mkey_cache_init()
| → mutex_lock(&dev->cache.rb_lock)
| → mlx5r_cache_create_ent_locked()
| → kzalloc(GFP_KERNEL)
| → fs_reclaim()
| → mmu_notifier_invalidate_range_start()
| → mlx5_ib_invalidate_range()
| → mutex_lock(&umem_odp->umem_mutex)
→ cache_ent_find_and_store() |
→ mutex_lock(&dev->cache.rb_lock) |
Additionally, when kzalloc() is called from within
cache_ent_find_and_store(), we encounter the same deadlock due to
re-acquisition of umem_mutex.
Solve by releasing umem_mutex in dereg_mr() after umr_revoke_mr()
and before acquiring rb_lock. This ensures that we don't hold
umem_mutex while performing memory allocations that could trigger
the reclaim path.
This change prevents the deadlock by ensuring proper lock ordering and
avoiding holding locks during memory allocation operations that could
trigger the reclaim path.
The following lockdep warning demonstrates the deadlock:
python3/20557 is trying to acquire lock:
ffff888387542128 (&umem_odp->umem_mutex){+.+.}-{4:4}, at:
mlx5_ib_invalidate_range+0x5b/0x550 [mlx5_ib]
but task is already holding lock:
ffffffff82f6b840 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}, at:
unmap_vmas+0x7b/0x1a0
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}:
fs_reclaim_acquire+0x60/0xd0
mem_cgroup_css_alloc+0x6f/0x9b0
cgroup_init_subsys+0xa4/0x240
cgroup_init+0x1c8/0x510
start_kernel+0x747/0x760
x86_64_start_reservations+0x25/0x30
x86_64_start_kernel+0x73/0x80
common_startup_64+0x129/0x138
-> #2 (fs_reclaim){+.+.}-{0:0}:
fs_reclaim_acquire+0x91/0xd0
__kmalloc_cache_noprof+0x4d/0x4c0
mlx5r_cache_create_ent_locked+0x75/0x620 [mlx5_ib]
mlx5_mkey_cache_init+0x186/0x360 [mlx5_ib]
mlx5_ib_stage_post_ib_reg_umr_init+0x3c/0x60 [mlx5_ib]
__mlx5_ib_add+0x4b/0x190 [mlx5_ib]
mlx5r_probe+0xd9/0x320 [mlx5_ib]
auxiliary_bus_probe+0x42/0x70
really_probe+0xdb/0x360
__driver_probe_device+0x8f/0x130
driver_probe_device+0x1f/0xb0
__driver_attach+0xd4/0x1f0
bus_for_each_dev+0x79/0xd0
bus_add_driver+0xf0/0x200
driver_register+0x6e/0xc0
__auxiliary_driver_register+0x6a/0xc0
do_one_initcall+0x5e/0x390
do_init_module+0x88/0x240
init_module_from_file+0x85/0xc0
idempotent_init_module+0x104/0x300
__x64_sys_finit_module+0x68/0xc0
do_syscall_64+0x6d/0x140
entry_SYSCALL_64_after_hwframe+0x4b/0x53
-> #1 (&dev->cache.rb_lock){+.+.}-{4:4}:
__mutex_lock+0x98/0xf10
__mlx5_ib_dereg_mr+0x6f2/0x890 [mlx5_ib]
mlx5_ib_dereg_mr+0x21/0x110 [mlx5_ib]
ib_dereg_mr_user+0x85/0x1f0 [ib_core]
---truncated--- |
| A vulnerability was determined in SourceCodester Farm Management System 1.0. Affected by this vulnerability is an unknown functionality. This manipulation causes exposure of information through directory listing. The attack is possible to be carried out remotely. The exploit has been publicly disclosed and may be utilized. |
| A security flaw has been discovered in PHPGurukul Tourism Management System 1.0. The affected element is an unknown function of the file /admin/user-bookings.php. The manipulation of the argument uid results in sql injection. It is possible to launch the attack remotely. The exploit has been released to the public and may be exploited. |
| Tanium addressed an arbitrary file deletion vulnerability in TanOS. |
| Value provided in one of POST parameters sent during the process of logging in to Times Software E-Payroll is not sanitized properly, which allows an unauthenticated attacker to perform DoS attacks. SQL injection attacks might also be feasible, although so far creating a working exploit has been prevented probably by backend filtering mechanisms.
Additionally, command injection attempts cause the application to return extensive error messages disclosing some information about the internal infrastructure.
Patching status is unknown because the vendor has not replied to messages sent by the CNA. |
| A DOM-based cross-site scripting vulnerability exists in electic-shop v1.0 (Bhabishya-123/E-commerce). The site's client-side JavaScript reads attacker-controlled input (for example, values derived from the URL or page fragment) and inserts it into the DOM via unsafe sinks (innerHTML/insertAdjacentHTML/document.write) without proper sanitization or context-aware encoding. An attacker can craft a malicious URL that, when opened by a victim, causes arbitrary JavaScript to execute in the victim's browser under the electic-shop origin. |
| NVIDIA Isaac-GR00T for all platforms contains a vulnerability in a Python component, where an attacker could cause a code injection issue. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering. |
| The Sound4 IMPACT web-based management interface is vulnerable to Remote Code Execution (RCE) via a malicious firmware update package. The update mechanism fails to validate the integrity of manual.sh, allowing an attacker to inject arbitrary commands by modifying this script and repackaging the firmware. |
| Local Agent DVR versions thru 6.6.1.0 are vulnerable to directory traversal that allows an unauthenticated local attacker to gain access to sensitive information, cause a server-side forgery request (SSRF), or execute OS commands. |
| eProsima Fast-DDS v3.3 and before has an infinite loop vulnerability caused by integer overflow in the Time_t:: fraction() function. |
| A code injection vulnerability exists in baryhuang/mcp-server-aws-resources-python 0.1.0 that allows remote code execution through insufficient input validation in the execute_query method. The vulnerability stems from the exposure of dangerous Python built-in functions (__import__, getattr, hasattr) in the execution namespace and the direct use of exec() to execute user-supplied code. An attacker can craft malicious queries to execute arbitrary Python code, leading to AWS credential theft (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY), file system access, environment variable disclosure, and potential system compromise. The vulnerability allows attackers to bypass intended security controls and gain unauthorized access to sensitive AWS resources and credentials stored in the server's environment. |
| A command injection vulnerability exists in the MCP Data Science Server's (reading-plus-ai/mcp-server-data-exploration) 0.1.6 in the safe_eval() function (src/mcp_server_ds/server.py:108). The function uses Python's exec() to execute user-supplied scripts but fails to restrict the __builtins__ dictionary in the globals parameter. When __builtins__ is not explicitly defined, Python automatically provides access to all built-in functions including __import__, exec, eval, and open. This allows an attacker to execute arbitrary Python code with full system privileges, leading to complete system compromise. The vulnerability can be exploited by submitting a malicious script to the run_script tool, requiring no authentication or special privileges. |
| A vulnerability was discovered in Awesome Miner thru 11.2.4 that allows arbitrary read and write to kernel memory and MSRs (such as LSTAR) as an unprivileged user. This is due to the implementation of an insecure version of WinRing0 (1.2.0.5, renamed to IntelliBreeze.Maintenance.Service.sys) that lacks a properly secured DACL, allowing unprivileged users to interact with the driver and, as a result, the kernel. This can result in local privilege escalation, information disclosure, denial of service, and other unspecified impacts. |
| pluginsGLPI's Database Inventory Plugin "manages" the Teclib' inventory agents in order to perform an inventory of the databases present on the workstation. In versions prior to 1.0.3, any authenticated user could send requests to agents. This issue has been patched in version 1.0.3. |
| NVIDIA Isaac-GR00T for all platforms contains a vulnerability in a Python component, where an attacker could cause a code injection issue. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering. |
| Faulty authorization control in software WinPlus v24.11.27 by Informática del Este that allows another user to be impersonated simply by knowing their 'numerical ID', meaning that an attacker could compromise another user's account, thereby affecting the confidentiality, integrity, and availability of the data stored in the application. |
| Unlimited upload vulnerability for dangerous file types in WinPlus v24.11.27 from Informática del Este. This vulnerability allows an attacker to upload a 'webshell' by sending a POST request to '/WinplusPortal/ws/sWinplus.svc/json/uploadfile'. |
| SQL injection vulnerability in WinPlus v24.11.27 by Informática del Este. This vulnerability allows an attacker recover, create, update an delete databases by sendng a POST request using the parameters 'val1' and 'cont in '/WinplusPortal/ws/sWinplus.svc/json/getacumper_post'. |