| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A security issue was discovered in ingress-nginx where the `nginx.ingress.kubernetes.io/auth-method` Ingress annotation can be used to inject configuration into nginx. This can lead to arbitrary code execution in the context of the ingress-nginx controller, and disclosure of Secrets accessible to the controller. (Note that in the default installation, the controller can access all Secrets cluster-wide.) |
| IBM Cloud Pak for Business Automation 25.0.0 through 25.0.0 Interim Fix 002, 24.0.1 through 24.0.1 Interim Fix 005, and 24.0.0 through 24.0.0 Interim Fix 007 could allow an authenticated user to cause a denial of service or corrupt existing data due to the improper validation of input length. |
| IBM Engineering Lifecycle Management - Global Configuration Management 7.0.3 through 7.0.3 Interim Fix 017, and 7.1.0 through 7.1.0 Interim Fix 004 IBM Global Configuration Management is vulnerable to cross-site scripting. This vulnerability allows an authenticated user to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. |
| IBM Concert 1.0.0 through 2.1.0 stores potentially sensitive information in log files that could be read by a local user. |
| Local privilege escalation due to DLL hijacking vulnerability. The following products are affected: Acronis True Image (Windows) before build 42386, Acronis True Image for Western Digital (Windows) before build 42636, Acronis True Image for SanDisk (Windows) before build 42679. |
| Easy Transfer Wifi Transfer v1.7 for iOS contains a persistent cross-site scripting vulnerability that allows remote attackers to inject malicious scripts by manipulating the oldPath, newPath, and path parameters in Create Folder and Move/Edit functions. Attackers can exploit improper input validation via POST requests to execute arbitrary JavaScript in the context of the mobile web application. |
| School ERP Pro 1.0 contains a remote code execution vulnerability that allows authenticated admin users to upload arbitrary PHP files as profile photos by bypassing file extension checks. Attackers can exploit improper file validation in pre-editstudent.inc.php to execute arbitrary code on the server. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: microchip: fix potential UAF in auxdev release callback
Similar to commit 1c11289b34ab ("peci: cpu: Fix use-after-free in
adev_release()"), the auxiliary device is not torn down in the correct
order. If auxiliary_device_add() fails, the release callback will be
called twice, resulting in a UAF. Due to timing, the auxdev code in this
driver "took inspiration" from the aforementioned commit, and thus its
bugs too!
Moving auxiliary_device_uninit() to the unregister callback instead
avoids the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: ov772x: Fix memleak in ov772x_probe()
A memory leak was reported when testing ov772x with bpf mock device:
AssertionError: unreferenced object 0xffff888109afa7a8 (size 8):
comm "python3", pid 279, jiffies 4294805921 (age 20.681s)
hex dump (first 8 bytes):
80 22 88 15 81 88 ff ff ."......
backtrace:
[<000000009990b438>] __kmalloc_node+0x44/0x1b0
[<000000009e32f7d7>] kvmalloc_node+0x34/0x180
[<00000000faf48134>] v4l2_ctrl_handler_init_class+0x11d/0x180 [videodev]
[<00000000da376937>] ov772x_probe+0x1c3/0x68c [ov772x]
[<000000003f0d225e>] i2c_device_probe+0x28d/0x680
[<00000000e0b6db89>] really_probe+0x17c/0x3f0
[<000000001b19fcee>] __driver_probe_device+0xe3/0x170
[<0000000048370519>] driver_probe_device+0x49/0x120
[<000000005ead07a0>] __device_attach_driver+0xf7/0x150
[<0000000043f452b8>] bus_for_each_drv+0x114/0x180
[<00000000358e5596>] __device_attach+0x1e5/0x2d0
[<0000000043f83c5d>] bus_probe_device+0x126/0x140
[<00000000ee0f3046>] device_add+0x810/0x1130
[<00000000e0278184>] i2c_new_client_device+0x359/0x4f0
[<0000000070baf34f>] of_i2c_register_device+0xf1/0x110
[<00000000a9f2159d>] of_i2c_notify+0x100/0x160
unreferenced object 0xffff888119825c00 (size 256):
comm "python3", pid 279, jiffies 4294805921 (age 20.681s)
hex dump (first 32 bytes):
00 b4 a5 17 81 88 ff ff 00 5e 82 19 81 88 ff ff .........^......
10 5c 82 19 81 88 ff ff 10 5c 82 19 81 88 ff ff .\.......\......
backtrace:
[<000000009990b438>] __kmalloc_node+0x44/0x1b0
[<000000009e32f7d7>] kvmalloc_node+0x34/0x180
[<0000000073d88e0b>] v4l2_ctrl_new.cold+0x19b/0x86f [videodev]
[<00000000b1f576fb>] v4l2_ctrl_new_std+0x16f/0x210 [videodev]
[<00000000caf7ac99>] ov772x_probe+0x1fa/0x68c [ov772x]
[<000000003f0d225e>] i2c_device_probe+0x28d/0x680
[<00000000e0b6db89>] really_probe+0x17c/0x3f0
[<000000001b19fcee>] __driver_probe_device+0xe3/0x170
[<0000000048370519>] driver_probe_device+0x49/0x120
[<000000005ead07a0>] __device_attach_driver+0xf7/0x150
[<0000000043f452b8>] bus_for_each_drv+0x114/0x180
[<00000000358e5596>] __device_attach+0x1e5/0x2d0
[<0000000043f83c5d>] bus_probe_device+0x126/0x140
[<00000000ee0f3046>] device_add+0x810/0x1130
[<00000000e0278184>] i2c_new_client_device+0x359/0x4f0
[<0000000070baf34f>] of_i2c_register_device+0xf1/0x110
The reason is that if priv->hdl.error is set, ov772x_probe() jumps to the
error_mutex_destroy without doing v4l2_ctrl_handler_free(), and all
resources allocated in v4l2_ctrl_handler_init() and v4l2_ctrl_new_std()
are leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
octeon_ep: cancel queued works in probe error path
If it fails to get the devices's MAC address, octep_probe exits while
leaving the delayed work intr_poll_task queued. When the work later
runs, it's a use after free.
Move the cancelation of intr_poll_task from octep_remove into
octep_device_cleanup. This does not change anything in the octep_remove
flow, but octep_device_cleanup is called also in the octep_probe error
path, where the cancelation is needed.
Note that the cancelation of ctrl_mbox_task has to follow
intr_poll_task's, because the ctrl_mbox_task may be queued by
intr_poll_task. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath6kl: reduce WARN to dev_dbg() in callback
The warn is triggered on a known race condition, documented in the code above
the test, that is correctly handled. Using WARN() hinders automated testing.
Reducing severity. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: lpass: Fix for KASAN use_after_free out of bounds
When we run syzkaller we get below Out of Bounds error.
"KASAN: slab-out-of-bounds Read in regcache_flat_read"
Below is the backtrace of the issue:
BUG: KASAN: slab-out-of-bounds in regcache_flat_read+0x10c/0x110
Read of size 4 at addr ffffff8088fbf714 by task syz-executor.4/14144
CPU: 6 PID: 14144 Comm: syz-executor.4 Tainted: G W
Hardware name: Qualcomm Technologies, Inc. sc7280 CRD platform (rev5+) (DT)
Call trace:
dump_backtrace+0x0/0x4ec
show_stack+0x34/0x50
dump_stack_lvl+0xdc/0x11c
print_address_description+0x30/0x2d8
kasan_report+0x178/0x1e4
__asan_report_load4_noabort+0x44/0x50
regcache_flat_read+0x10c/0x110
regcache_read+0xf8/0x5a0
_regmap_read+0x45c/0x86c
_regmap_update_bits+0x128/0x290
regmap_update_bits_base+0xc0/0x15c
snd_soc_component_update_bits+0xa8/0x22c
snd_soc_component_write_field+0x68/0xd4
tx_macro_put_dec_enum+0x1d0/0x268
snd_ctl_elem_write+0x288/0x474
By Error checking and checking valid values issue gets rectifies. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: hif_usb: fix memory leak of remain_skbs
hif_dev->remain_skb is allocated and used exclusively in
ath9k_hif_usb_rx_stream(). It is implied that an allocated remain_skb is
processed and subsequently freed (in error paths) only during the next
call of ath9k_hif_usb_rx_stream().
So, if the urbs are deallocated between those two calls due to the device
deinitialization or suspend, it is possible that ath9k_hif_usb_rx_stream()
is not called next time and the allocated remain_skb is leaked. Our local
Syzkaller instance was able to trigger that.
remain_skb makes sense when receiving two consecutive urbs which are
logically linked together, i.e. a specific data field from the first skb
indicates a cached skb to be allocated, memcpy'd with some data and
subsequently processed in the next call to ath9k_hif_usb_rx_stream(). Urbs
deallocation supposedly makes that link irrelevant so we need to free the
cached skb in those cases.
Fix the leak by introducing a function to explicitly free remain_skb (if
it is not NULL) when the rx urbs have been deallocated. remain_skb is NULL
when it has not been allocated at all (hif_dev struct is kzalloced) or
when it has been processed in next call to ath9k_hif_usb_rx_stream().
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
x86: fix clear_user_rep_good() exception handling annotation
This code no longer exists in mainline, because it was removed in
commit d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory
clearing") upstream.
However, rather than backport the full range of x86 memory clearing and
copying cleanups, fix the exception table annotation placement for the
final 'rep movsb' in clear_user_rep_good(): rather than pointing at the
actual instruction that did the user space access, it pointed to the
register move just before it.
That made sense from a code flow standpoint, but not from an actual
usage standpoint: it means that if user access takes an exception, the
exception handler won't actually find the instruction in the exception
tables.
As a result, rather than fixing it up and returning -EFAULT, it would
then turn it into a kernel oops report instead, something like:
BUG: unable to handle page fault for address: 0000000020081000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
...
RIP: 0010:clear_user_rep_good+0x1c/0x30 arch/x86/lib/clear_page_64.S:147
...
Call Trace:
__clear_user arch/x86/include/asm/uaccess_64.h:103 [inline]
clear_user arch/x86/include/asm/uaccess_64.h:124 [inline]
iov_iter_zero+0x709/0x1290 lib/iov_iter.c:800
iomap_dio_hole_iter fs/iomap/direct-io.c:389 [inline]
iomap_dio_iter fs/iomap/direct-io.c:440 [inline]
__iomap_dio_rw+0xe3d/0x1cd0 fs/iomap/direct-io.c:601
iomap_dio_rw+0x40/0xa0 fs/iomap/direct-io.c:689
ext4_dio_read_iter fs/ext4/file.c:94 [inline]
ext4_file_read_iter+0x4be/0x690 fs/ext4/file.c:145
call_read_iter include/linux/fs.h:2183 [inline]
do_iter_readv_writev+0x2e0/0x3b0 fs/read_write.c:733
do_iter_read+0x2f2/0x750 fs/read_write.c:796
vfs_readv+0xe5/0x150 fs/read_write.c:916
do_preadv+0x1b6/0x270 fs/read_write.c:1008
__do_sys_preadv2 fs/read_write.c:1070 [inline]
__se_sys_preadv2 fs/read_write.c:1061 [inline]
__x64_sys_preadv2+0xef/0x150 fs/read_write.c:1061
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
which then looks like a filesystem bug rather than the incorrect
exception annotation that it is.
[ The alternative to this one-liner fix is to take the upstream series
that cleans this all up:
68674f94ffc9 ("x86: don't use REP_GOOD or ERMS for small memory copies")
20f3337d350c ("x86: don't use REP_GOOD or ERMS for small memory clearing")
adfcf4231b8c ("x86: don't use REP_GOOD or ERMS for user memory copies")
* d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory clearing")
3639a535587d ("x86: move stac/clac from user copy routines into callers")
577e6a7fd50d ("x86: inline the 'rep movs' in user copies for the FSRM case")
8c9b6a88b7e2 ("x86: improve on the non-rep 'clear_user' function")
427fda2c8a49 ("x86: improve on the non-rep 'copy_user' function")
* e046fe5a36a9 ("x86: set FSRS automatically on AMD CPUs that have FSRM")
e1f2750edc4a ("x86: remove 'zerorest' argument from __copy_user_nocache()")
034ff37d3407 ("x86: rewrite '__copy_user_nocache' function")
with either the whole series or at a minimum the two marked commits
being needed to fix this issue ] |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: don't access released socket during error recovery
While the error recovery work is temporarily failing reconnect attempts,
running the 'nvme list' command causes a kernel NULL pointer dereference
by calling getsockname() with a released socket.
During error recovery work, the nvme tcp socket is released and a new one
created, so it is not safe to access the socket without proper check. |
| In the Linux kernel, the following vulnerability has been resolved:
media: radio-shark: Add endpoint checks
The syzbot fuzzer was able to provoke a WARNING from the radio-shark2
driver:
------------[ cut here ]------------
usb 1-1: BOGUS urb xfer, pipe 1 != type 3
WARNING: CPU: 0 PID: 3271 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed2/0x1880 drivers/usb/core/urb.c:504
Modules linked in:
CPU: 0 PID: 3271 Comm: kworker/0:3 Not tainted 6.1.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_submit_urb+0xed2/0x1880 drivers/usb/core/urb.c:504
Code: 7c 24 18 e8 00 36 ea fb 48 8b 7c 24 18 e8 36 1c 02 ff 41 89 d8 44 89 e1 4c 89 ea 48 89 c6 48 c7 c7 a0 b6 90 8a e8 9a 29 b8 03 <0f> 0b e9 58 f8 ff ff e8 d2 35 ea fb 48 81 c5 c0 05 00 00 e9 84 f7
RSP: 0018:ffffc90003876dd0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000
RDX: ffff8880750b0040 RSI: ffffffff816152b8 RDI: fffff5200070edac
RBP: ffff8880172d81e0 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000080000000 R11: 0000000000000000 R12: 0000000000000001
R13: ffff8880285c5040 R14: 0000000000000002 R15: ffff888017158200
FS: 0000000000000000(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffe03235b90 CR3: 000000000bc8e000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
usb_start_wait_urb+0x101/0x4b0 drivers/usb/core/message.c:58
usb_bulk_msg+0x226/0x550 drivers/usb/core/message.c:387
shark_write_reg+0x1ff/0x2e0 drivers/media/radio/radio-shark2.c:88
...
The problem was caused by the fact that the driver does not check
whether the endpoints it uses are actually present and have the
appropriate types. This can be fixed by adding a simple check of
these endpoints (and similarly for the radio-shark driver). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Make bpf_refcount_acquire fallible for non-owning refs
This patch fixes an incorrect assumption made in the original
bpf_refcount series [0], specifically that the BPF program calling
bpf_refcount_acquire on some node can always guarantee that the node is
alive. In that series, the patch adding failure behavior to rbtree_add
and list_push_{front, back} breaks this assumption for non-owning
references.
Consider the following program:
n = bpf_kptr_xchg(&mapval, NULL);
/* skip error checking */
bpf_spin_lock(&l);
if(bpf_rbtree_add(&t, &n->rb, less)) {
bpf_refcount_acquire(n);
/* Failed to add, do something else with the node */
}
bpf_spin_unlock(&l);
It's incorrect to assume that bpf_refcount_acquire will always succeed in this
scenario. bpf_refcount_acquire is being called in a critical section
here, but the lock being held is associated with rbtree t, which isn't
necessarily the lock associated with the tree that the node is already
in. So after bpf_rbtree_add fails to add the node and calls bpf_obj_drop
in it, the program has no ownership of the node's lifetime. Therefore
the node's refcount can be decr'd to 0 at any time after the failing
rbtree_add. If this happens before the refcount_acquire above, the node
might be free'd, and regardless refcount_acquire will be incrementing a
0 refcount.
Later patches in the series exercise this scenario, resulting in the
expected complaint from the kernel (without this patch's changes):
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 1 PID: 207 at lib/refcount.c:25 refcount_warn_saturate+0xbc/0x110
Modules linked in: bpf_testmod(O)
CPU: 1 PID: 207 Comm: test_progs Tainted: G O 6.3.0-rc7-02231-g723de1a718a2-dirty #371
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:refcount_warn_saturate+0xbc/0x110
Code: 6f 64 f6 02 01 e8 84 a3 5c ff 0f 0b eb 9d 80 3d 5e 64 f6 02 00 75 94 48 c7 c7 e0 13 d2 82 c6 05 4e 64 f6 02 01 e8 64 a3 5c ff <0f> 0b e9 7a ff ff ff 80 3d 38 64 f6 02 00 0f 85 6d ff ff ff 48 c7
RSP: 0018:ffff88810b9179b0 EFLAGS: 00010082
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 0000000000000202 RSI: 0000000000000008 RDI: ffffffff857c3680
RBP: ffff88810027d3c0 R08: ffffffff8125f2a4 R09: ffff88810b9176e7
R10: ffffed1021722edc R11: 746e756f63666572 R12: ffff88810027d388
R13: ffff88810027d3c0 R14: ffffc900005fe030 R15: ffffc900005fe048
FS: 00007fee0584a700(0000) GS:ffff88811b280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005634a96f6c58 CR3: 0000000108ce9002 CR4: 0000000000770ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
bpf_refcount_acquire_impl+0xb5/0xc0
(rest of output snipped)
The patch addresses this by changing bpf_refcount_acquire_impl to use
refcount_inc_not_zero instead of refcount_inc and marking
bpf_refcount_acquire KF_RET_NULL.
For owning references, though, we know the above scenario is not possible
and thus that bpf_refcount_acquire will always succeed. Some verifier
bookkeeping is added to track "is input owning ref?" for bpf_refcount_acquire
calls and return false from is_kfunc_ret_null for bpf_refcount_acquire on
owning refs despite it being marked KF_RET_NULL.
Existing selftests using bpf_refcount_acquire are modified where
necessary to NULL-check its return value.
[0]: https://lore.kernel.org/bpf/20230415201811.343116-1-davemarchevsky@fb.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/perf: add sentinel to xehp_oa_b_counters
Arrays passed to reg_in_range_table should end with empty record.
The patch solves KASAN detected bug with signature:
BUG: KASAN: global-out-of-bounds in xehp_is_valid_b_counter_addr+0x2c7/0x350 [i915]
Read of size 4 at addr ffffffffa1555d90 by task perf/1518
CPU: 4 PID: 1518 Comm: perf Tainted: G U 6.4.0-kasan_438-g3303d06107f3+ #1
Hardware name: Intel Corporation Meteor Lake Client Platform/MTL-P DDR5 SODIMM SBS RVP, BIOS MTLPFWI1.R00.3223.D80.2305311348 05/31/2023
Call Trace:
<TASK>
...
xehp_is_valid_b_counter_addr+0x2c7/0x350 [i915]
(cherry picked from commit 2f42c5afb34b5696cf5fe79e744f99be9b218798) |
| In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Don't dereference ACPI root object handle
Since the commit referenced in the Fixes: tag below the VMBus client driver
is walking the ACPI namespace up from the VMBus ACPI device to the ACPI
namespace root object trying to find Hyper-V MMIO ranges.
However, if it is not able to find them it ends trying to walk resources of
the ACPI namespace root object itself.
This object has all-ones handle, which causes a NULL pointer dereference
in the ACPI code (from dereferencing this pointer with an offset).
This in turn causes an oops on boot with VMBus host implementations that do
not provide Hyper-V MMIO ranges in their VMBus ACPI device or its
ancestors.
The QEMU VMBus implementation is an example of such implementation.
I guess providing these ranges is optional, since all tested Windows
versions seem to be able to use VMBus devices without them.
Fix this by explicitly terminating the lookup at the ACPI namespace root
object.
Note that Linux guests under KVM/QEMU do not use the Hyper-V PV interface
by default - they only do so if the KVM PV interface is missing or
disabled.
Example stack trace of such oops:
[ 3.710827] ? __die+0x1f/0x60
[ 3.715030] ? page_fault_oops+0x159/0x460
[ 3.716008] ? exc_page_fault+0x73/0x170
[ 3.716959] ? asm_exc_page_fault+0x22/0x30
[ 3.717957] ? acpi_ns_lookup+0x7a/0x4b0
[ 3.718898] ? acpi_ns_internalize_name+0x79/0xc0
[ 3.720018] acpi_ns_get_node_unlocked+0xb5/0xe0
[ 3.721120] ? acpi_ns_check_object_type+0xfe/0x200
[ 3.722285] ? acpi_rs_convert_aml_to_resource+0x37/0x6e0
[ 3.723559] ? down_timeout+0x3a/0x60
[ 3.724455] ? acpi_ns_get_node+0x3a/0x60
[ 3.725412] acpi_ns_get_node+0x3a/0x60
[ 3.726335] acpi_ns_evaluate+0x1c3/0x2c0
[ 3.727295] acpi_ut_evaluate_object+0x64/0x1b0
[ 3.728400] acpi_rs_get_method_data+0x2b/0x70
[ 3.729476] ? vmbus_platform_driver_probe+0x1d0/0x1d0 [hv_vmbus]
[ 3.730940] ? vmbus_platform_driver_probe+0x1d0/0x1d0 [hv_vmbus]
[ 3.732411] acpi_walk_resources+0x78/0xd0
[ 3.733398] vmbus_platform_driver_probe+0x9f/0x1d0 [hv_vmbus]
[ 3.734802] platform_probe+0x3d/0x90
[ 3.735684] really_probe+0x19b/0x400
[ 3.736570] ? __device_attach_driver+0x100/0x100
[ 3.737697] __driver_probe_device+0x78/0x160
[ 3.738746] driver_probe_device+0x1f/0x90
[ 3.739743] __driver_attach+0xc2/0x1b0
[ 3.740671] bus_for_each_dev+0x70/0xc0
[ 3.741601] bus_add_driver+0x10e/0x210
[ 3.742527] driver_register+0x55/0xf0
[ 3.744412] ? 0xffffffffc039a000
[ 3.745207] hv_acpi_init+0x3c/0x1000 [hv_vmbus] |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: ac97: Fix possible NULL dereference in snd_ac97_mixer
smatch error:
sound/pci/ac97/ac97_codec.c:2354 snd_ac97_mixer() error:
we previously assumed 'rac97' could be null (see line 2072)
remove redundant assignment, return error if rac97 is NULL. |