Search

Search Results (326182 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53246 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: fix DFS traversal oops without CONFIG_CIFS_DFS_UPCALL When compiled with CONFIG_CIFS_DFS_UPCALL disabled, cifs_dfs_d_automount is NULL. cifs.ko logic for mapping CIFS_FATTR_DFS_REFERRAL attributes to S_AUTOMOUNT and corresponding dentry flags is retained regardless of CONFIG_CIFS_DFS_UPCALL, leading to a NULL pointer dereference in VFS follow_automount() when traversing a DFS referral link: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... Call Trace: <TASK> __traverse_mounts+0xb5/0x220 ? cifs_revalidate_mapping+0x65/0xc0 [cifs] step_into+0x195/0x610 ? lookup_fast+0xe2/0xf0 path_lookupat+0x64/0x140 filename_lookup+0xc2/0x140 ? __create_object+0x299/0x380 ? kmem_cache_alloc+0x119/0x220 ? user_path_at_empty+0x31/0x50 user_path_at_empty+0x31/0x50 __x64_sys_chdir+0x2a/0xd0 ? exit_to_user_mode_prepare+0xca/0x100 do_syscall_64+0x42/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc This fix adds an inline cifs_dfs_d_automount() {return -EREMOTE} handler when CONFIG_CIFS_DFS_UPCALL is disabled. An alternative would be to avoid flagging S_AUTOMOUNT, etc. without CONFIG_CIFS_DFS_UPCALL. This approach was chosen as it provides more control over the error path.
CVE-2023-53183 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
CVE-2023-52832 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-05 9.1 Critical
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: don't return unset power in ieee80211_get_tx_power() We can get a UBSAN warning if ieee80211_get_tx_power() returns the INT_MIN value mac80211 internally uses for "unset power level". UBSAN: signed-integer-overflow in net/wireless/nl80211.c:3816:5 -2147483648 * 100 cannot be represented in type 'int' CPU: 0 PID: 20433 Comm: insmod Tainted: G WC OE Call Trace: dump_stack+0x74/0x92 ubsan_epilogue+0x9/0x50 handle_overflow+0x8d/0xd0 __ubsan_handle_mul_overflow+0xe/0x10 nl80211_send_iface+0x688/0x6b0 [cfg80211] [...] cfg80211_register_wdev+0x78/0xb0 [cfg80211] cfg80211_netdev_notifier_call+0x200/0x620 [cfg80211] [...] ieee80211_if_add+0x60e/0x8f0 [mac80211] ieee80211_register_hw+0xda5/0x1170 [mac80211] In this case, simply return an error instead, to indicate that no data is available.
CVE-2023-52476 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86/lbr: Filter vsyscall addresses We found that a panic can occur when a vsyscall is made while LBR sampling is active. If the vsyscall is interrupted (NMI) for perf sampling, this call sequence can occur (most recent at top): __insn_get_emulate_prefix() insn_get_emulate_prefix() insn_get_prefixes() insn_get_opcode() decode_branch_type() get_branch_type() intel_pmu_lbr_filter() intel_pmu_handle_irq() perf_event_nmi_handler() Within __insn_get_emulate_prefix() at frame 0, a macro is called: peek_nbyte_next(insn_byte_t, insn, i) Within this macro, this dereference occurs: (insn)->next_byte Inspecting registers at this point, the value of the next_byte field is the address of the vsyscall made, for example the location of the vsyscall version of gettimeofday() at 0xffffffffff600000. The access to an address in the vsyscall region will trigger an oops due to an unhandled page fault. To fix the bug, filtering for vsyscalls can be done when determining the branch type. This patch will return a "none" branch if a kernel address if found to lie in the vsyscall region.
CVE-2024-58090 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/core: Prevent rescheduling when interrupts are disabled David reported a warning observed while loop testing kexec jump: Interrupts enabled after irqrouter_resume+0x0/0x50 WARNING: CPU: 0 PID: 560 at drivers/base/syscore.c:103 syscore_resume+0x18a/0x220 kernel_kexec+0xf6/0x180 __do_sys_reboot+0x206/0x250 do_syscall_64+0x95/0x180 The corresponding interrupt flag trace: hardirqs last enabled at (15573): [<ffffffffa8281b8e>] __up_console_sem+0x7e/0x90 hardirqs last disabled at (15580): [<ffffffffa8281b73>] __up_console_sem+0x63/0x90 That means __up_console_sem() was invoked with interrupts enabled. Further instrumentation revealed that in the interrupt disabled section of kexec jump one of the syscore_suspend() callbacks woke up a task, which set the NEED_RESCHED flag. A later callback in the resume path invoked cond_resched() which in turn led to the invocation of the scheduler: __cond_resched+0x21/0x60 down_timeout+0x18/0x60 acpi_os_wait_semaphore+0x4c/0x80 acpi_ut_acquire_mutex+0x3d/0x100 acpi_ns_get_node+0x27/0x60 acpi_ns_evaluate+0x1cb/0x2d0 acpi_rs_set_srs_method_data+0x156/0x190 acpi_pci_link_set+0x11c/0x290 irqrouter_resume+0x54/0x60 syscore_resume+0x6a/0x200 kernel_kexec+0x145/0x1c0 __do_sys_reboot+0xeb/0x240 do_syscall_64+0x95/0x180 This is a long standing problem, which probably got more visible with the recent printk changes. Something does a task wakeup and the scheduler sets the NEED_RESCHED flag. cond_resched() sees it set and invokes schedule() from a completely bogus context. The scheduler enables interrupts after context switching, which causes the above warning at the end. Quite some of the code paths in syscore_suspend()/resume() can result in triggering a wakeup with the exactly same consequences. They might not have done so yet, but as they share a lot of code with normal operations it's just a question of time. The problem only affects the PREEMPT_NONE and PREEMPT_VOLUNTARY scheduling models. Full preemption is not affected as cond_resched() is disabled and the preemption check preemptible() takes the interrupt disabled flag into account. Cure the problem by adding a corresponding check into cond_resched().
CVE-2024-58085 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tomoyo: don't emit warning in tomoyo_write_control() syzbot is reporting too large allocation warning at tomoyo_write_control(), for one can write a very very long line without new line character. To fix this warning, I use __GFP_NOWARN rather than checking for KMALLOC_MAX_SIZE, for practically a valid line should be always shorter than 32KB where the "too small to fail" memory-allocation rule applies. One might try to write a valid line that is longer than 32KB, but such request will likely fail with -ENOMEM. Therefore, I feel that separately returning -EINVAL when a line is longer than KMALLOC_MAX_SIZE is redundant. There is no need to distinguish over-32KB and over-KMALLOC_MAX_SIZE.
CVE-2024-58001 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ocfs2: handle a symlink read error correctly Patch series "Convert ocfs2 to use folios". Mark did a conversion of ocfs2 to use folios and sent it to me as a giant patch for review ;-) So I've redone it as individual patches, and credited Mark for the patches where his code is substantially the same. It's not a bad way to do it; his patch had some bugs and my patches had some bugs. Hopefully all our bugs were different from each other. And hopefully Mark likes all the changes I made to his code! This patch (of 23): If we can't read the buffer, be sure to unlock the page before returning.
CVE-2024-57976 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: do proper folio cleanup when cow_file_range() failed [BUG] When testing with COW fixup marked as BUG_ON() (this is involved with the new pin_user_pages*() change, which should not result new out-of-band dirty pages), I hit a crash triggered by the BUG_ON() from hitting COW fixup path. This BUG_ON() happens just after a failed btrfs_run_delalloc_range(): BTRFS error (device dm-2): failed to run delalloc range, root 348 ino 405 folio 65536 submit_bitmap 6-15 start 90112 len 106496: -28 ------------[ cut here ]------------ kernel BUG at fs/btrfs/extent_io.c:1444! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP CPU: 0 UID: 0 PID: 434621 Comm: kworker/u24:8 Tainted: G OE 6.12.0-rc7-custom+ #86 Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : extent_writepage_io+0x2d4/0x308 [btrfs] lr : extent_writepage_io+0x2d4/0x308 [btrfs] Call trace: extent_writepage_io+0x2d4/0x308 [btrfs] extent_writepage+0x218/0x330 [btrfs] extent_write_cache_pages+0x1d4/0x4b0 [btrfs] btrfs_writepages+0x94/0x150 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x88/0xc8 start_delalloc_inodes+0x180/0x3b0 [btrfs] btrfs_start_delalloc_roots+0x174/0x280 [btrfs] shrink_delalloc+0x114/0x280 [btrfs] flush_space+0x250/0x2f8 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x164/0x408 worker_thread+0x25c/0x388 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: aa1403e1 9402f3ef aa1403e0 9402f36f (d4210000) ---[ end trace 0000000000000000 ]--- [CAUSE] That failure is mostly from cow_file_range(), where we can hit -ENOSPC. Although the -ENOSPC is already a bug related to our space reservation code, let's just focus on the error handling. For example, we have the following dirty range [0, 64K) of an inode, with 4K sector size and 4K page size: 0 16K 32K 48K 64K |///////////////////////////////////////| |#######################################| Where |///| means page are still dirty, and |###| means the extent io tree has EXTENT_DELALLOC flag. - Enter extent_writepage() for page 0 - Enter btrfs_run_delalloc_range() for range [0, 64K) - Enter cow_file_range() for range [0, 64K) - Function btrfs_reserve_extent() only reserved one 16K extent So we created extent map and ordered extent for range [0, 16K) 0 16K 32K 48K 64K |////////|//////////////////////////////| |<- OE ->|##############################| And range [0, 16K) has its delalloc flag cleared. But since we haven't yet submit any bio, involved 4 pages are still dirty. - Function btrfs_reserve_extent() returns with -ENOSPC Now we have to run error cleanup, which will clear all EXTENT_DELALLOC* flags and clear the dirty flags for the remaining ranges: 0 16K 32K 48K 64K |////////| | | | | Note that range [0, 16K) still has its pages dirty. - Some time later, writeback is triggered again for the range [0, 16K) since the page range still has dirty flags. - btrfs_run_delalloc_range() will do nothing because there is no EXTENT_DELALLOC flag. - extent_writepage_io() finds page 0 has no ordered flag Which falls into the COW fixup path, triggering the BUG_ON(). Unfortunately this error handling bug dates back to the introduction of btrfs. Thankfully with the abuse of COW fixup, at least it won't crash the kernel. [FIX] Instead of immediately unlocking the extent and folios, we keep the extent and folios locked until either erroring out or the whole delalloc range finished. When the whole delalloc range finished without error, we just unlock the whole range with PAGE_SET_ORDERED (and PAGE_UNLOCK for !keep_locked cases) ---truncated---
CVE-2024-57975 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: do proper folio cleanup when run_delalloc_nocow() failed [BUG] With CONFIG_DEBUG_VM set, test case generic/476 has some chance to crash with the following VM_BUG_ON_FOLIO(): BTRFS error (device dm-3): cow_file_range failed, start 1146880 end 1253375 len 106496 ret -28 BTRFS error (device dm-3): run_delalloc_nocow failed, start 1146880 end 1253375 len 106496 ret -28 page: refcount:4 mapcount:0 mapping:00000000592787cc index:0x12 pfn:0x10664 aops:btrfs_aops [btrfs] ino:101 dentry name(?):"f1774" flags: 0x2fffff80004028(uptodate|lru|private|node=0|zone=2|lastcpupid=0xfffff) page dumped because: VM_BUG_ON_FOLIO(!folio_test_locked(folio)) ------------[ cut here ]------------ kernel BUG at mm/page-writeback.c:2992! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP CPU: 2 UID: 0 PID: 3943513 Comm: kworker/u24:15 Tainted: G OE 6.12.0-rc7-custom+ #87 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : folio_clear_dirty_for_io+0x128/0x258 lr : folio_clear_dirty_for_io+0x128/0x258 Call trace: folio_clear_dirty_for_io+0x128/0x258 btrfs_folio_clamp_clear_dirty+0x80/0xd0 [btrfs] __process_folios_contig+0x154/0x268 [btrfs] extent_clear_unlock_delalloc+0x5c/0x80 [btrfs] run_delalloc_nocow+0x5f8/0x760 [btrfs] btrfs_run_delalloc_range+0xa8/0x220 [btrfs] writepage_delalloc+0x230/0x4c8 [btrfs] extent_writepage+0xb8/0x358 [btrfs] extent_write_cache_pages+0x21c/0x4e8 [btrfs] btrfs_writepages+0x94/0x150 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x88/0xc8 start_delalloc_inodes+0x178/0x3a8 [btrfs] btrfs_start_delalloc_roots+0x174/0x280 [btrfs] shrink_delalloc+0x114/0x280 [btrfs] flush_space+0x250/0x2f8 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x164/0x408 worker_thread+0x25c/0x388 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: 910a8021 a90363f7 a9046bf9 94012379 (d4210000) ---[ end trace 0000000000000000 ]--- [CAUSE] The first two lines of extra debug messages show the problem is caused by the error handling of run_delalloc_nocow(). E.g. we have the following dirtied range (4K blocksize 4K page size): 0 16K 32K |//////////////////////////////////////| | Pre-allocated | And the range [0, 16K) has a preallocated extent. - Enter run_delalloc_nocow() for range [0, 16K) Which found range [0, 16K) is preallocated, can do the proper NOCOW write. - Enter fallback_to_fow() for range [16K, 32K) Since the range [16K, 32K) is not backed by preallocated extent, we have to go COW. - cow_file_range() failed for range [16K, 32K) So cow_file_range() will do the clean up by clearing folio dirty, unlock the folios. Now the folios in range [16K, 32K) is unlocked. - Enter extent_clear_unlock_delalloc() from run_delalloc_nocow() Which is called with PAGE_START_WRITEBACK to start page writeback. But folios can only be marked writeback when it's properly locked, thus this triggered the VM_BUG_ON_FOLIO(). Furthermore there is another hidden but common bug that run_delalloc_nocow() is not clearing the folio dirty flags in its error handling path. This is the common bug shared between run_delalloc_nocow() and cow_file_range(). [FIX] - Clear folio dirty for range [@start, @cur_offset) Introduce a helper, cleanup_dirty_folios(), which will find and lock the folio in the range, clear the dirty flag and start/end the writeback, with the extra handling for the @locked_folio. - Introduce a helper to clear folio dirty, start and end writeback - Introduce a helper to record the last failed COW range end This is to trace which range we should skip, to avoid double unlocking. - Skip the failed COW range for the e ---truncated---
CVE-2024-57948 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mac802154: check local interfaces before deleting sdata list syzkaller reported a corrupted list in ieee802154_if_remove. [1] Remove an IEEE 802.15.4 network interface after unregister an IEEE 802.15.4 hardware device from the system. CPU0 CPU1 ==== ==== genl_family_rcv_msg_doit ieee802154_unregister_hw ieee802154_del_iface ieee802154_remove_interfaces rdev_del_virtual_intf_deprecated list_del(&sdata->list) ieee802154_if_remove list_del_rcu The net device has been unregistered, since the rcu grace period, unregistration must be run before ieee802154_if_remove. To avoid this issue, add a check for local->interfaces before deleting sdata list. [1] kernel BUG at lib/list_debug.c:58! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 0 UID: 0 PID: 6277 Comm: syz-executor157 Not tainted 6.12.0-rc6-syzkaller-00005-g557329bcecc2 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:__list_del_entry_valid_or_report+0xf4/0x140 lib/list_debug.c:56 Code: e8 a1 7e 00 07 90 0f 0b 48 c7 c7 e0 37 60 8c 4c 89 fe e8 8f 7e 00 07 90 0f 0b 48 c7 c7 40 38 60 8c 4c 89 fe e8 7d 7e 00 07 90 <0f> 0b 48 c7 c7 a0 38 60 8c 4c 89 fe e8 6b 7e 00 07 90 0f 0b 48 c7 RSP: 0018:ffffc9000490f3d0 EFLAGS: 00010246 RAX: 000000000000004e RBX: dead000000000122 RCX: d211eee56bb28d00 RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000 RBP: ffff88805b278dd8 R08: ffffffff8174a12c R09: 1ffffffff2852f0d R10: dffffc0000000000 R11: fffffbfff2852f0e R12: dffffc0000000000 R13: dffffc0000000000 R14: dead000000000100 R15: ffff88805b278cc0 FS: 0000555572f94380(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000056262e4a3000 CR3: 0000000078496000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __list_del_entry_valid include/linux/list.h:124 [inline] __list_del_entry include/linux/list.h:215 [inline] list_del_rcu include/linux/rculist.h:157 [inline] ieee802154_if_remove+0x86/0x1e0 net/mac802154/iface.c:687 rdev_del_virtual_intf_deprecated net/ieee802154/rdev-ops.h:24 [inline] ieee802154_del_iface+0x2c0/0x5c0 net/ieee802154/nl-phy.c:323 genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0xb14/0xec0 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2551 genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1331 [inline] netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1357 netlink_sendmsg+0x8e4/0xcb0 net/netlink/af_netlink.c:1901 sock_sendmsg_nosec net/socket.c:729 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:744 ____sys_sendmsg+0x52a/0x7e0 net/socket.c:2607 ___sys_sendmsg net/socket.c:2661 [inline] __sys_sendmsg+0x292/0x380 net/socket.c:2690 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
CVE-2024-57924 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: relax assertions on failure to encode file handles Encoding file handles is usually performed by a filesystem >encode_fh() method that may fail for various reasons. The legacy users of exportfs_encode_fh(), namely, nfsd and name_to_handle_at(2) syscall are ready to cope with the possibility of failure to encode a file handle. There are a few other users of exportfs_encode_{fh,fid}() that currently have a WARN_ON() assertion when ->encode_fh() fails. Relax those assertions because they are wrong. The second linked bug report states commit 16aac5ad1fa9 ("ovl: support encoding non-decodable file handles") in v6.6 as the regressing commit, but this is not accurate. The aforementioned commit only increases the chances of the assertion and allows triggering the assertion with the reproducer using overlayfs, inotify and drop_caches. Triggering this assertion was always possible with other filesystems and other reasons of ->encode_fh() failures and more particularly, it was also possible with the exact same reproducer using overlayfs that is mounted with options index=on,nfs_export=on also on kernels < v6.6. Therefore, I am not listing the aforementioned commit as a Fixes commit. Backport hint: this patch will have a trivial conflict applying to v6.6.y, and other trivial conflicts applying to stable kernels < v6.6.
CVE-2024-57899 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix mbss changed flags corruption on 32 bit systems On 32-bit systems, the size of an unsigned long is 4 bytes, while a u64 is 8 bytes. Therefore, when using or_each_set_bit(bit, &bits, sizeof(changed) * BITS_PER_BYTE), the code is incorrectly searching for a bit in a 32-bit variable that is expected to be 64 bits in size, leading to incorrect bit finding. Solution: Ensure that the size of the bits variable is correctly adjusted for each architecture. Call Trace: ? show_regs+0x54/0x58 ? __warn+0x6b/0xd4 ? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211] ? report_bug+0x113/0x150 ? exc_overflow+0x30/0x30 ? handle_bug+0x27/0x44 ? exc_invalid_op+0x18/0x50 ? handle_exception+0xf6/0xf6 ? exc_overflow+0x30/0x30 ? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211] ? exc_overflow+0x30/0x30 ? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211] ? ieee80211_mesh_work+0xff/0x260 [mac80211] ? cfg80211_wiphy_work+0x72/0x98 [cfg80211] ? process_one_work+0xf1/0x1fc ? worker_thread+0x2c0/0x3b4 ? kthread+0xc7/0xf0 ? mod_delayed_work_on+0x4c/0x4c ? kthread_complete_and_exit+0x14/0x14 ? ret_from_fork+0x24/0x38 ? kthread_complete_and_exit+0x14/0x14 ? ret_from_fork_asm+0xf/0x14 ? entry_INT80_32+0xf0/0xf0 [restore no-op path for no changes]
CVE-2024-57898 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-05 3.3 Low
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: clear link ID from bitmap during link delete after clean up Currently, during link deletion, the link ID is first removed from the valid_links bitmap before performing any clean-up operations. However, some functions require the link ID to remain in the valid_links bitmap. One such example is cfg80211_cac_event(). The flow is - nl80211_remove_link() cfg80211_remove_link() ieee80211_del_intf_link() ieee80211_vif_set_links() ieee80211_vif_update_links() ieee80211_link_stop() cfg80211_cac_event() cfg80211_cac_event() requires link ID to be present but it is cleared already in cfg80211_remove_link(). Ultimately, WARN_ON() is hit. Therefore, clear the link ID from the bitmap only after completing the link clean-up.
CVE-2024-57896 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: btrfs: flush delalloc workers queue before stopping cleaner kthread during unmount During the unmount path, at close_ctree(), we first stop the cleaner kthread, using kthread_stop() which frees the associated task_struct, and then stop and destroy all the work queues. However after we stopped the cleaner we may still have a worker from the delalloc_workers queue running inode.c:submit_compressed_extents(), which calls btrfs_add_delayed_iput(), which in turn tries to wake up the cleaner kthread - which was already destroyed before, resulting in a use-after-free on the task_struct. Syzbot reported this with the following stack traces: BUG: KASAN: slab-use-after-free in __lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089 Read of size 8 at addr ffff8880259d2818 by task kworker/u8:3/52 CPU: 1 UID: 0 PID: 52 Comm: kworker/u8:3 Not tainted 6.13.0-rc1-syzkaller-00002-gcdd30ebb1b9f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: btrfs-delalloc btrfs_work_helper Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 __lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089 lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xd5/0x120 kernel/locking/spinlock.c:162 class_raw_spinlock_irqsave_constructor include/linux/spinlock.h:551 [inline] try_to_wake_up+0xc2/0x1470 kernel/sched/core.c:4205 submit_compressed_extents+0xdf/0x16e0 fs/btrfs/inode.c:1615 run_ordered_work fs/btrfs/async-thread.c:288 [inline] btrfs_work_helper+0x96f/0xc40 fs/btrfs/async-thread.c:324 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Allocated by task 2: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 unpoison_slab_object mm/kasan/common.c:319 [inline] __kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:345 kasan_slab_alloc include/linux/kasan.h:250 [inline] slab_post_alloc_hook mm/slub.c:4104 [inline] slab_alloc_node mm/slub.c:4153 [inline] kmem_cache_alloc_node_noprof+0x1d9/0x380 mm/slub.c:4205 alloc_task_struct_node kernel/fork.c:180 [inline] dup_task_struct+0x57/0x8c0 kernel/fork.c:1113 copy_process+0x5d1/0x3d50 kernel/fork.c:2225 kernel_clone+0x223/0x870 kernel/fork.c:2807 kernel_thread+0x1bc/0x240 kernel/fork.c:2869 create_kthread kernel/kthread.c:412 [inline] kthreadd+0x60d/0x810 kernel/kthread.c:767 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Freed by task 24: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x59/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2338 [inline] slab_free mm/slub.c:4598 [inline] kmem_cache_free+0x195/0x410 mm/slub.c:4700 put_task_struct include/linux/sched/task.h:144 [inline] delayed_put_task_struct+0x125/0x300 kernel/exit.c:227 rcu_do_batch kernel/rcu/tree.c:2567 [inline] rcu_core+0xaaa/0x17a0 kernel/rcu/tree.c:2823 handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:554 run_ksoftirqd+0xca/0x130 kernel/softirq.c:943 ---truncated---
CVE-2024-57893 1 Linux 1 Linux Kernel 2026-01-05 6.3 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: seq: oss: Fix races at processing SysEx messages OSS sequencer handles the SysEx messages split in 6 bytes packets, and ALSA sequencer OSS layer tries to combine those. It stores the data in the internal buffer and this access is racy as of now, which may lead to the out-of-bounds access. As a temporary band-aid fix, introduce a mutex for serializing the process of the SysEx message packets.
CVE-2024-57875 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: RCU protect disk->conv_zones_bitmap Ensure that a disk revalidation changing the conventional zones bitmap of a disk does not cause invalid memory references when using the disk_zone_is_conv() helper by RCU protecting the disk->conv_zones_bitmap pointer. disk_zone_is_conv() is modified to operate under the RCU read lock and the function disk_set_conv_zones_bitmap() is added to update a disk conv_zones_bitmap pointer using rcu_replace_pointer() with the disk zone_wplugs_lock spinlock held. disk_free_zone_resources() is modified to call disk_update_zone_resources() with a NULL bitmap pointer to free the disk conv_zones_bitmap. disk_set_conv_zones_bitmap() is also used in disk_update_zone_resources() to set the new (revalidated) bitmap and free the old one.
CVE-2024-57850 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: jffs2: Prevent rtime decompress memory corruption The rtime decompression routine does not fully check bounds during the entirety of the decompression pass and can corrupt memory outside the decompression buffer if the compressed data is corrupted. This adds the required check to prevent this failure mode.
CVE-2024-57849 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: s390/cpum_sf: Handle CPU hotplug remove during sampling CPU hotplug remove handling triggers the following function call sequence: CPUHP_AP_PERF_S390_SF_ONLINE --> s390_pmu_sf_offline_cpu() ... CPUHP_AP_PERF_ONLINE --> perf_event_exit_cpu() The s390 CPUMF sampling CPU hotplug handler invokes: s390_pmu_sf_offline_cpu() +--> cpusf_pmu_setup() +--> setup_pmc_cpu() +--> deallocate_buffers() This function de-allocates all sampling data buffers (SDBs) allocated for that CPU at event initialization. It also clears the PMU_F_RESERVED bit. The CPU is gone and can not be sampled. With the event still being active on the removed CPU, the CPU event hotplug support in kernel performance subsystem triggers the following function calls on the removed CPU: perf_event_exit_cpu() +--> perf_event_exit_cpu_context() +--> __perf_event_exit_context() +--> __perf_remove_from_context() +--> event_sched_out() +--> cpumsf_pmu_del() +--> cpumsf_pmu_stop() +--> hw_perf_event_update() to stop and remove the event. During removal of the event, the sampling device driver tries to read out the remaining samples from the sample data buffers (SDBs). But they have already been freed (and may have been re-assigned). This may lead to a use after free situation in which case the samples are most likely invalid. In the best case the memory has not been reassigned and still contains valid data. Remedy this situation and check if the CPU is still in reserved state (bit PMU_F_RESERVED set). In this case the SDBs have not been released an contain valid data. This is always the case when the event is removed (and no CPU hotplug off occured). If the PMU_F_RESERVED bit is not set, the SDB buffers are gone.
CVE-2024-57843 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: virtio-net: fix overflow inside virtnet_rq_alloc When the frag just got a page, then may lead to regression on VM. Specially if the sysctl net.core.high_order_alloc_disable value is 1, then the frag always get a page when do refill. Which could see reliable crashes or scp failure (scp a file 100M in size to VM). The issue is that the virtnet_rq_dma takes up 16 bytes at the beginning of a new frag. When the frag size is larger than PAGE_SIZE, everything is fine. However, if the frag is only one page and the total size of the buffer and virtnet_rq_dma is larger than one page, an overflow may occur. The commit f9dac92ba908 ("virtio_ring: enable premapped mode whatever use_dma_api") introduced this problem. And we reverted some commits to fix this in last linux version. Now we try to enable it and fix this bug directly. Here, when the frag size is not enough, we reduce the buffer len to fix this problem.
CVE-2024-57809 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: imx6: Fix suspend/resume support on i.MX6QDL The suspend/resume functionality is currently broken on the i.MX6QDL platform, as documented in the NXP errata (ERR005723): https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf This patch addresses the issue by sharing most of the suspend/resume sequences used by other i.MX devices, while avoiding modifications to critical registers that disrupt the PCIe functionality. It targets the same problem as the following downstream commit: https://github.com/nxp-imx/linux-imx/commit/4e92355e1f79d225ea842511fcfd42b343b32995 Unlike the downstream commit, this patch also resets the connected PCIe device if possible. Without this reset, certain drivers, such as ath10k or iwlwifi, will crash on resume. The device reset is also done by the driver on other i.MX platforms, making this patch consistent with existing practices. Upon resuming, the kernel will hang and display an error. Here's an example of the error encountered with the ath10k driver: ath10k_pci 0000:01:00.0: Unable to change power state from D3hot to D0, device inaccessible Unhandled fault: imprecise external abort (0x1406) at 0x0106f944 Without this patch, suspend/resume will fail on i.MX6QDL devices if a PCIe device is connected. [kwilczynski: commit log, added tag for stable releases]