Search Results (15833 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-38293 3 Debian, Linux, Qualcomm 3 Debian Linux, Linux Kernel, Qca6698aq 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix node corruption in ar->arvifs list In current WLAN recovery code flow, ath11k_core_halt() only reinitializes the "arvifs" list head. This will cause the list node immediately following the list head to become an invalid list node. Because the prev of that node still points to the list head "arvifs", but the next of the list head "arvifs" no longer points to that list node. When a WLAN recovery occurs during the execution of a vif removal, and it happens before the spin_lock_bh(&ar->data_lock) in ath11k_mac_op_remove_interface(), list_del() will detect the previously mentioned situation, thereby triggering a kernel panic. The fix is to remove and reinitialize all vif list nodes from the list head "arvifs" during WLAN halt. The reinitialization is to make the list nodes valid, ensuring that the list_del() in ath11k_mac_op_remove_interface() can execute normally. Call trace: __list_del_entry_valid_or_report+0xb8/0xd0 ath11k_mac_op_remove_interface+0xb0/0x27c [ath11k] drv_remove_interface+0x48/0x194 [mac80211] ieee80211_do_stop+0x6e0/0x844 [mac80211] ieee80211_stop+0x44/0x17c [mac80211] __dev_close_many+0xac/0x150 __dev_change_flags+0x194/0x234 dev_change_flags+0x24/0x6c devinet_ioctl+0x3a0/0x670 inet_ioctl+0x200/0x248 sock_do_ioctl+0x60/0x118 sock_ioctl+0x274/0x35c __arm64_sys_ioctl+0xac/0xf0 invoke_syscall+0x48/0x114 ... Tested-on: QCA6698AQ hw2.1 PCI WLAN.HSP.1.1-04591-QCAHSPSWPL_V1_V2_SILICONZ_IOE-1
CVE-2025-38180 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net: atm: fix /proc/net/atm/lec handling /proc/net/atm/lec must ensure safety against dev_lec[] changes. It appears it had dev_put() calls without prior dev_hold(), leading to imbalance and UAF.
CVE-2025-68325 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_cake: Fix incorrect qlen reduction in cake_drop In cake_drop(), qdisc_tree_reduce_backlog() is used to update the qlen and backlog of the qdisc hierarchy. Its caller, cake_enqueue(), assumes that the parent qdisc will enqueue the current packet. However, this assumption breaks when cake_enqueue() returns NET_XMIT_CN: the parent qdisc stops enqueuing current packet, leaving the tree qlen/backlog accounting inconsistent. This mismatch can lead to a NULL dereference (e.g., when the parent Qdisc is qfq_qdisc). This patch computes the qlen/backlog delta in a more robust way by observing the difference before and after the series of cake_drop() calls, and then compensates the qdisc tree accounting if cake_enqueue() returns NET_XMIT_CN. To ensure correct compensation when ACK thinning is enabled, a new variable is introduced to keep qlen unchanged.
CVE-2025-68324 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: imm: Fix use-after-free bug caused by unfinished delayed work The delayed work item 'imm_tq' is initialized in imm_attach() and scheduled via imm_queuecommand() for processing SCSI commands. When the IMM parallel port SCSI host adapter is detached through imm_detach(), the imm_struct device instance is deallocated. However, the delayed work might still be pending or executing when imm_detach() is called, leading to use-after-free bugs when the work function imm_interrupt() accesses the already freed imm_struct memory. The race condition can occur as follows: CPU 0(detach thread) | CPU 1 | imm_queuecommand() | imm_queuecommand_lck() imm_detach() | schedule_delayed_work() kfree(dev) //FREE | imm_interrupt() | dev = container_of(...) //USE dev-> //USE Add disable_delayed_work_sync() in imm_detach() to guarantee proper cancellation of the delayed work item before imm_struct is deallocated.
CVE-2025-68323 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: fix use-after-free caused by uec->work The delayed work uec->work is scheduled in gaokun_ucsi_probe() but never properly canceled in gaokun_ucsi_remove(). This creates use-after-free scenarios where the ucsi and gaokun_ucsi structure are freed after ucsi_destroy() completes execution, while the gaokun_ucsi_register_worker() might be either currently executing or still pending in the work queue. The already-freed gaokun_ucsi or ucsi structure may then be accessed. Furthermore, the race window is 3 seconds, which is sufficiently long to make this bug easily reproducible. The following is the trace captured by KASAN: ================================================================== BUG: KASAN: slab-use-after-free in __run_timers+0x5ec/0x630 Write of size 8 at addr ffff00000ec28cc8 by task swapper/0/0 ... Call trace: show_stack+0x18/0x24 (C) dump_stack_lvl+0x78/0x90 print_report+0x114/0x580 kasan_report+0xa4/0xf0 __asan_report_store8_noabort+0x20/0x2c __run_timers+0x5ec/0x630 run_timer_softirq+0xe8/0x1cc handle_softirqs+0x294/0x720 __do_softirq+0x14/0x20 ____do_softirq+0x10/0x1c call_on_irq_stack+0x30/0x48 do_softirq_own_stack+0x1c/0x28 __irq_exit_rcu+0x27c/0x364 irq_exit_rcu+0x10/0x1c el1_interrupt+0x40/0x60 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x6c/0x70 arch_local_irq_enable+0x4/0x8 (P) do_idle+0x334/0x458 cpu_startup_entry+0x60/0x70 rest_init+0x158/0x174 start_kernel+0x2f8/0x394 __primary_switched+0x8c/0x94 Allocated by task 72 on cpu 0 at 27.510341s: kasan_save_stack+0x2c/0x54 kasan_save_track+0x24/0x5c kasan_save_alloc_info+0x40/0x54 __kasan_kmalloc+0xa0/0xb8 __kmalloc_node_track_caller_noprof+0x1c0/0x588 devm_kmalloc+0x7c/0x1c8 gaokun_ucsi_probe+0xa0/0x840 auxiliary_bus_probe+0x94/0xf8 really_probe+0x17c/0x5b8 __driver_probe_device+0x158/0x2c4 driver_probe_device+0x10c/0x264 __device_attach_driver+0x168/0x2d0 bus_for_each_drv+0x100/0x188 __device_attach+0x174/0x368 device_initial_probe+0x14/0x20 bus_probe_device+0x120/0x150 device_add+0xb3c/0x10fc __auxiliary_device_add+0x88/0x130 ... Freed by task 73 on cpu 1 at 28.910627s: kasan_save_stack+0x2c/0x54 kasan_save_track+0x24/0x5c __kasan_save_free_info+0x4c/0x74 __kasan_slab_free+0x60/0x8c kfree+0xd4/0x410 devres_release_all+0x140/0x1f0 device_unbind_cleanup+0x20/0x190 device_release_driver_internal+0x344/0x460 device_release_driver+0x18/0x24 bus_remove_device+0x198/0x274 device_del+0x310/0xa84 ... The buggy address belongs to the object at ffff00000ec28c00 which belongs to the cache kmalloc-512 of size 512 The buggy address is located 200 bytes inside of freed 512-byte region The buggy address belongs to the physical page: page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x4ec28 head: order:2 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0x3fffe0000000040(head|node=0|zone=0|lastcpupid=0x1ffff) page_type: f5(slab) raw: 03fffe0000000040 ffff000008801c80 dead000000000122 0000000000000000 raw: 0000000000000000 0000000080100010 00000000f5000000 0000000000000000 head: 03fffe0000000040 ffff000008801c80 dead000000000122 0000000000000000 head: 0000000000000000 0000000080100010 00000000f5000000 0000000000000000 head: 03fffe0000000002 fffffdffc03b0a01 00000000ffffffff 00000000ffffffff head: ffffffffffffffff 0000000000000000 00000000ffffffff 0000000000000004 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff00000ec28b80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff00000ec28c00: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff00000ec28c80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff00000ec28d00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff00000ec28d80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================ ---truncated---
CVE-2025-40363 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: ipv6: fix field-spanning memcpy warning in AH output Fix field-spanning memcpy warnings in ah6_output() and ah6_output_done() where extension headers are copied to/from IPv6 address fields, triggering fortify-string warnings about writes beyond the 16-byte address fields. memcpy: detected field-spanning write (size 40) of single field "&top_iph->saddr" at net/ipv6/ah6.c:439 (size 16) WARNING: CPU: 0 PID: 8838 at net/ipv6/ah6.c:439 ah6_output+0xe7e/0x14e0 net/ipv6/ah6.c:439 The warnings are false positives as the extension headers are intentionally placed after the IPv6 header in memory. Fix by properly copying addresses and extension headers separately, and introduce helper functions to avoid code duplication.
CVE-2025-40359 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86/intel: Fix KASAN global-out-of-bounds warning When running "perf mem record" command on CWF, the below KASAN global-out-of-bounds warning is seen. ================================================================== BUG: KASAN: global-out-of-bounds in cmt_latency_data+0x176/0x1b0 Read of size 4 at addr ffffffffb721d000 by task dtlb/9850 Call Trace: kasan_report+0xb8/0xf0 cmt_latency_data+0x176/0x1b0 setup_arch_pebs_sample_data+0xf49/0x2560 intel_pmu_drain_arch_pebs+0x577/0xb00 handle_pmi_common+0x6c4/0xc80 The issue is caused by below code in __grt_latency_data(). The code tries to access x86_hybrid_pmu structure which doesn't exist on non-hybrid platform like CWF. WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big) So add is_hybrid() check before calling this WARN_ON_ONCE to fix the global-out-of-bounds access issue.
CVE-2025-68186 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Do not warn in ring_buffer_map_get_reader() when reader catches up The function ring_buffer_map_get_reader() is a bit more strict than the other get reader functions, and except for certain situations the rb_get_reader_page() should not return NULL. If it does, it triggers a warning. This warning was triggering but after looking at why, it was because another acceptable situation was happening and it wasn't checked for. If the reader catches up to the writer and there's still data to be read on the reader page, then the rb_get_reader_page() will return NULL as there's no new page to get. In this situation, the reader page should not be updated and no warning should trigger.
CVE-2025-68182 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: fix potential use after free in iwl_mld_remove_link() This code frees "link" by calling kfree_rcu(link, rcu_head) and then it dereferences "link" to get the "link->fw_id". Save the "link->fw_id" first to avoid a potential use after free.
CVE-2025-68175 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: media: nxp: imx8-isi: Fix streaming cleanup on release The current implementation unconditionally calls mxc_isi_video_cleanup_streaming() in mxc_isi_video_release(). This can lead to situations where any release call (like from a simple "v4l2-ctl -l") may release a currently streaming queue when called on such a device. This is reproducible on an i.MX8MP board by streaming from an ISI capture device using gstreamer: gst-launch-1.0 -v v4l2src device=/dev/videoX ! \ video/x-raw,format=GRAY8,width=1280,height=800,framerate=1/120 ! \ fakesink While this stream is running, querying the caps of the same device provokes the error state: v4l2-ctl -l -d /dev/videoX This results in the following trace: [ 155.452152] ------------[ cut here ]------------ [ 155.452163] WARNING: CPU: 0 PID: 1708 at drivers/media/platform/nxp/imx8-isi/imx8-isi-pipe.c:713 mxc_isi_pipe_irq_handler+0x19c/0x1b0 [imx8_isi] [ 157.004248] Modules linked in: cfg80211 rpmsg_ctrl rpmsg_char rpmsg_tty virtio_rpmsg_bus rpmsg_ns rpmsg_core rfkill nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables mcp251x6 [ 157.053499] CPU: 0 UID: 0 PID: 1708 Comm: python3 Not tainted 6.15.4-00114-g1f61ca5cad76 #1 PREEMPT [ 157.064369] Hardware name: imx8mp_board_01 (DT) [ 157.068205] pstate: 400000c5 (nZcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 157.075169] pc : mxc_isi_pipe_irq_handler+0x19c/0x1b0 [imx8_isi] [ 157.081195] lr : mxc_isi_pipe_irq_handler+0x38/0x1b0 [imx8_isi] [ 157.087126] sp : ffff800080003ee0 [ 157.090438] x29: ffff800080003ee0 x28: ffff0000c3688000 x27: 0000000000000000 [ 157.097580] x26: 0000000000000000 x25: ffff0000c1e7ac00 x24: ffff800081b5ad50 [ 157.104723] x23: 00000000000000d1 x22: 0000000000000000 x21: ffff0000c25e4000 [ 157.111866] x20: 0000000060000200 x19: ffff80007a0608d0 x18: 0000000000000000 [ 157.119008] x17: ffff80006a4e3000 x16: ffff800080000000 x15: 0000000000000000 [ 157.126146] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 [ 157.133287] x11: 0000000000000040 x10: ffff0000c01445f0 x9 : ffff80007a053a38 [ 157.140425] x8 : ffff0000c04004b8 x7 : 0000000000000000 x6 : 0000000000000000 [ 157.147567] x5 : ffff0000c0400490 x4 : ffff80006a4e3000 x3 : ffff0000c25e4000 [ 157.154706] x2 : 0000000000000000 x1 : ffff8000825c0014 x0 : 0000000060000200 [ 157.161850] Call trace: [ 157.164296] mxc_isi_pipe_irq_handler+0x19c/0x1b0 [imx8_isi] (P) [ 157.170319] __handle_irq_event_percpu+0x58/0x218 [ 157.175029] handle_irq_event+0x54/0xb8 [ 157.178867] handle_fasteoi_irq+0xac/0x248 [ 157.182968] handle_irq_desc+0x48/0x68 [ 157.186723] generic_handle_domain_irq+0x24/0x38 [ 157.191346] gic_handle_irq+0x54/0x120 [ 157.195098] call_on_irq_stack+0x24/0x30 [ 157.199027] do_interrupt_handler+0x88/0x98 [ 157.203212] el0_interrupt+0x44/0xc0 [ 157.206792] __el0_irq_handler_common+0x18/0x28 [ 157.211328] el0t_64_irq_handler+0x10/0x20 [ 157.215429] el0t_64_irq+0x198/0x1a0 [ 157.219009] ---[ end trace 0000000000000000 ]--- Address this issue by moving the streaming preparation and cleanup to the vb2 .prepare_streaming() and .unprepare_streaming() operations. This also simplifies the driver by allowing direct usage of the vb2_ioctl_streamon() and vb2_ioctl_streamoff() helpers, and removal of the manual cleanup from mxc_isi_video_release().
CVE-2025-68193 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/guc: Add devm release action to safely tear down CT When a buffer object (BO) is allocated with the XE_BO_FLAG_GGTT_INVALIDATE flag, the driver initiates TLB invalidation requests via the CTB mechanism while releasing the BO. However a premature release of the CTB BO can lead to system crashes, as observed in: Oops: Oops: 0000 [#1] SMP NOPTI RIP: 0010:h2g_write+0x2f3/0x7c0 [xe] Call Trace: guc_ct_send_locked+0x8b/0x670 [xe] xe_guc_ct_send_locked+0x19/0x60 [xe] send_tlb_invalidation+0xb4/0x460 [xe] xe_gt_tlb_invalidation_ggtt+0x15e/0x2e0 [xe] ggtt_invalidate_gt_tlb.part.0+0x16/0x90 [xe] ggtt_node_remove+0x110/0x140 [xe] xe_ggtt_node_remove+0x40/0xa0 [xe] xe_ggtt_remove_bo+0x87/0x250 [xe] Introduce a devm-managed release action during xe_guc_ct_init() and xe_guc_ct_init_post_hwconfig() to ensure proper CTB disablement before resource deallocation, preventing the use-after-free scenario.
CVE-2025-68195 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Add missing terminator for zen5_rdseed_microcode Running x86_match_min_microcode_rev() on a Zen5 CPU trips up KASAN for an out of bounds access.
CVE-2025-40354 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: increase max link count and fix link->enc NULL pointer access [why] 1.) dc->links[MAX_LINKS] array size smaller than actual requested. max_connector + max_dpia + 4 virtual = 14. increase from 12 to 14. 2.) hw_init() access null LINK_ENC for dpia non display_endpoint. (cherry picked from commit d7f5a61e1b04ed87b008c8d327649d184dc5bb45)
CVE-2025-68187 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: net: mdio: Check regmap pointer returned by device_node_to_regmap() The call to device_node_to_regmap() in airoha_mdio_probe() can return an ERR_PTR() if regmap initialization fails. Currently, the driver stores the pointer without validation, which could lead to a crash if it is later dereferenced. Add an IS_ERR() check and return the corresponding error code to make the probe path more robust.
CVE-2025-68211 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ksm: use range-walk function to jump over holes in scan_get_next_rmap_item Currently, scan_get_next_rmap_item() walks every page address in a VMA to locate mergeable pages. This becomes highly inefficient when scanning large virtual memory areas that contain mostly unmapped regions, causing ksmd to use large amount of cpu without deduplicating much pages. This patch replaces the per-address lookup with a range walk using walk_page_range(). The range walker allows KSM to skip over entire unmapped holes in a VMA, avoiding unnecessary lookups. This problem was previously discussed in [1]. Consider the following test program which creates a 32 TiB mapping in the virtual address space but only populates a single page: #include <unistd.h> #include <stdio.h> #include <sys/mman.h> /* 32 TiB */ const size_t size = 32ul * 1024 * 1024 * 1024 * 1024; int main() { char *area = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_NORESERVE | MAP_PRIVATE | MAP_ANON, -1, 0); if (area == MAP_FAILED) { perror("mmap() failed\n"); return -1; } /* Populate a single page such that we get an anon_vma. */ *area = 0; /* Enable KSM. */ madvise(area, size, MADV_MERGEABLE); pause(); return 0; } $ ./ksm-sparse & $ echo 1 > /sys/kernel/mm/ksm/run Without this patch ksmd uses 100% of the cpu for a long time (more then 1 hour in my test machine) scanning all the 32 TiB virtual address space that contain only one mapped page. This makes ksmd essentially deadlocked not able to deduplicate anything of value. With this patch ksmd walks only the one mapped page and skips the rest of the 32 TiB virtual address space, making the scan fast using little cpu.
CVE-2025-40346 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arch_topology: Fix incorrect error check in topology_parse_cpu_capacity() Fix incorrect use of PTR_ERR_OR_ZERO() in topology_parse_cpu_capacity() which causes the code to proceed with NULL clock pointers. The current logic uses !PTR_ERR_OR_ZERO(cpu_clk) which evaluates to true for both valid pointers and NULL, leading to potential NULL pointer dereference in clk_get_rate(). Per include/linux/err.h documentation, PTR_ERR_OR_ZERO(ptr) returns: "The error code within @ptr if it is an error pointer; 0 otherwise." This means PTR_ERR_OR_ZERO() returns 0 for both valid pointers AND NULL pointers. Therefore !PTR_ERR_OR_ZERO(cpu_clk) evaluates to true (proceed) when cpu_clk is either valid or NULL, causing clk_get_rate(NULL) to be called when of_clk_get() returns NULL. Replace with !IS_ERR_OR_NULL(cpu_clk) which only proceeds for valid pointers, preventing potential NULL pointer dereference in clk_get_rate().
CVE-2025-40352 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/mellanox: mlxbf-pmc: add sysfs_attr_init() to count_clock init The lock-related debug logic (CONFIG_LOCK_STAT) in the kernel is noting the following warning when the BlueField-3 SOC is booted: BUG: key ffff00008a3402a8 has not been registered! ------------[ cut here ]------------ DEBUG_LOCKS_WARN_ON(1) WARNING: CPU: 4 PID: 592 at kernel/locking/lockdep.c:4801 lockdep_init_map_type+0x1d4/0x2a0 <snip> Call trace: lockdep_init_map_type+0x1d4/0x2a0 __kernfs_create_file+0x84/0x140 sysfs_add_file_mode_ns+0xcc/0x1cc internal_create_group+0x110/0x3d4 internal_create_groups.part.0+0x54/0xcc sysfs_create_groups+0x24/0x40 device_add+0x6e8/0x93c device_register+0x28/0x40 __hwmon_device_register+0x4b0/0x8a0 devm_hwmon_device_register_with_groups+0x7c/0xe0 mlxbf_pmc_probe+0x1e8/0x3e0 [mlxbf_pmc] platform_probe+0x70/0x110 The mlxbf_pmc driver must call sysfs_attr_init() during the initialization of the "count_clock" data structure to avoid this warning.
CVE-2025-68196 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Cache streams targeting link when performing LT automation [WHY] Last LT automation update can cause crash by referencing current_state and calling into dc_update_planes_and_stream which may clobber current_state. [HOW] Cache relevant stream pointers and iterate through them instead of relying on the current_state.
CVE-2025-68167 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gpiolib: fix invalid pointer access in debugfs If the memory allocation in gpiolib_seq_start() fails, the s->private field remains uninitialized and is later dereferenced without checking in gpiolib_seq_stop(). Initialize s->private to NULL before calling kzalloc() and check it before dereferencing it.
CVE-2025-68197 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix null pointer dereference in bnxt_bs_trace_check_wrap() With older FW, we may get the ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER for FW trace data type that has not been initialized. This will result in a crash in bnxt_bs_trace_type_wrap(). Add a guard to check for a valid magic_byte pointer before proceeding.