| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/rw: defer fsnotify calls to task context
We can't call these off the kiocb completion as that might be off
soft/hard irq context. Defer the calls to when we process the
task_work for this request. That avoids valid complaints like:
stack backtrace:
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.0.0-rc6-syzkaller-00321-g105a36f3694e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_usage_bug kernel/locking/lockdep.c:3961 [inline]
valid_state kernel/locking/lockdep.c:3973 [inline]
mark_lock_irq kernel/locking/lockdep.c:4176 [inline]
mark_lock.part.0.cold+0x18/0xd8 kernel/locking/lockdep.c:4632
mark_lock kernel/locking/lockdep.c:4596 [inline]
mark_usage kernel/locking/lockdep.c:4527 [inline]
__lock_acquire+0x11d9/0x56d0 kernel/locking/lockdep.c:5007
lock_acquire kernel/locking/lockdep.c:5666 [inline]
lock_acquire+0x1ab/0x570 kernel/locking/lockdep.c:5631
__fs_reclaim_acquire mm/page_alloc.c:4674 [inline]
fs_reclaim_acquire+0x115/0x160 mm/page_alloc.c:4688
might_alloc include/linux/sched/mm.h:271 [inline]
slab_pre_alloc_hook mm/slab.h:700 [inline]
slab_alloc mm/slab.c:3278 [inline]
__kmem_cache_alloc_lru mm/slab.c:3471 [inline]
kmem_cache_alloc+0x39/0x520 mm/slab.c:3491
fanotify_alloc_fid_event fs/notify/fanotify/fanotify.c:580 [inline]
fanotify_alloc_event fs/notify/fanotify/fanotify.c:813 [inline]
fanotify_handle_event+0x1130/0x3f40 fs/notify/fanotify/fanotify.c:948
send_to_group fs/notify/fsnotify.c:360 [inline]
fsnotify+0xafb/0x1680 fs/notify/fsnotify.c:570
__fsnotify_parent+0x62f/0xa60 fs/notify/fsnotify.c:230
fsnotify_parent include/linux/fsnotify.h:77 [inline]
fsnotify_file include/linux/fsnotify.h:99 [inline]
fsnotify_access include/linux/fsnotify.h:309 [inline]
__io_complete_rw_common+0x485/0x720 io_uring/rw.c:195
io_complete_rw+0x1a/0x1f0 io_uring/rw.c:228
iomap_dio_complete_work fs/iomap/direct-io.c:144 [inline]
iomap_dio_bio_end_io+0x438/0x5e0 fs/iomap/direct-io.c:178
bio_endio+0x5f9/0x780 block/bio.c:1564
req_bio_endio block/blk-mq.c:695 [inline]
blk_update_request+0x3fc/0x1300 block/blk-mq.c:825
scsi_end_request+0x7a/0x9a0 drivers/scsi/scsi_lib.c:541
scsi_io_completion+0x173/0x1f70 drivers/scsi/scsi_lib.c:971
scsi_complete+0x122/0x3b0 drivers/scsi/scsi_lib.c:1438
blk_complete_reqs+0xad/0xe0 block/blk-mq.c:1022
__do_softirq+0x1d3/0x9c6 kernel/softirq.c:571
invoke_softirq kernel/softirq.c:445 [inline]
__irq_exit_rcu+0x123/0x180 kernel/softirq.c:650
irq_exit_rcu+0x5/0x20 kernel/softirq.c:662
common_interrupt+0xa9/0xc0 arch/x86/kernel/irq.c:240 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: avoid uninit memory read in ath9k_htc_rx_msg()
syzbot is reporting uninit value at ath9k_htc_rx_msg() [1], for
ioctl(USB_RAW_IOCTL_EP_WRITE) can call ath9k_hif_usb_rx_stream() with
pkt_len = 0 but ath9k_hif_usb_rx_stream() uses
__dev_alloc_skb(pkt_len + 32, GFP_ATOMIC) based on an assumption that
pkt_len is valid. As a result, ath9k_hif_usb_rx_stream() allocates skb
with uninitialized memory and ath9k_htc_rx_msg() is reading from
uninitialized memory.
Since bytes accessed by ath9k_htc_rx_msg() is not known until
ath9k_htc_rx_msg() is called, it would be difficult to check minimal valid
pkt_len at "if (pkt_len > 2 * MAX_RX_BUF_SIZE) {" line in
ath9k_hif_usb_rx_stream().
We have two choices. One is to workaround by adding __GFP_ZERO so that
ath9k_htc_rx_msg() sees 0 if pkt_len is invalid. The other is to let
ath9k_htc_rx_msg() validate pkt_len before accessing. This patch chose
the latter.
Note that I'm not sure threshold condition is correct, for I can't find
details on possible packet length used by this protocol. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: set tx_tstamps when creating new Tx rings via ethtool
When the user changes the number of queues via ethtool, the driver
allocates new rings. This allocation did not initialize tx_tstamps. This
results in the tx_tstamps field being zero (due to kcalloc allocation), and
would result in a NULL pointer dereference when attempting a transmit
timestamp on the new ring. |
| Coolify is an open-source and self-hostable tool for managing servers, applications, and databases. Prior to version 4.0.0-beta.451, an authenticated command injection vulnerability in the Database Backup functionality allows users with application/service management permissions to execute arbitrary commands as root on managed servers. Database names used in backup operations are passed directly to shell commands without sanitization, enabling full remote code execution. Version 4.0.0-beta.451 fixes the issue. |
| CSZ CMS 1.2.7 contains an HTML injection vulnerability that allows authenticated users to insert malicious hyperlinks in message titles. Attackers can craft POST requests to the member messaging system with HTML-based links to potentially conduct phishing or social engineering attacks. |
| A vulnerability was detected in Tenda WH450 1.0.0.18. Impacted is an unknown function of the file /goform/NatStaticSetting. The manipulation of the argument page results in stack-based buffer overflow. The attack may be performed from remote. The exploit is now public and may be used. |
| Soda PDF Desktop Uncontrolled Search Path Element Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of Soda PDF Desktop. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the configuration of OpenSSL. The product loads an OpenSSL configuration file from an unsecured location. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-25793. |
| Soda PDF Desktop PDF File Parsing Out-Of-Bounds Read Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated object. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-27143. |
| Soda PDF Desktop Launch Insufficient UI Warning Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the implementation of the Launch action. The issue results from allowing the execution of dangerous script without user warning. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27494. |
| Tencent HunyuanDiT model_resume Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent HunyuanDiT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the model_resume function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27183. |
| Tencent NeuralNLP-NeuralClassifier _load_checkpoint Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent NeuralNLP-NeuralClassifier. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the _load_checkpoint function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27184. |
| Tencent TFace eval Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent TFace. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the eval endpoint. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27187. |
| GIMP JP2 File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of JP2 files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-28248. |
| CSZ CMS 1.2.7 contains a persistent cross-site scripting vulnerability that allows unauthorized users to embed malicious JavaScript in private messages. Attackers can send messages with script payloads in the user-agent header, which will execute when an admin views the message in the backend dashboard. |
| PDFsam Enhanced Launch Insufficient UI Warning Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of PDFsam Enhanced. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the implementation of the Launch action. The issue results from allowing the execution of dangerous script without user warning. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27500. |
| PDFsam Enhanced XLS File Insufficient UI Warning Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of PDFsam Enhanced. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the processing of XLS files. The issue results from allowing the execution of dangerous script without user warning. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27498. |
| Soda PDF Desktop CBZ File Parsing Directory Traversal Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of CBZ files. The issue results from the lack of proper validation of a user-supplied path prior to using it in file operations. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27509. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27675. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix racy bitfield write in btrfs_clear_space_info_full()
From the memory-barriers.txt document regarding memory barrier ordering
guarantees:
(*) These guarantees do not apply to bitfields, because compilers often
generate code to modify these using non-atomic read-modify-write
sequences. Do not attempt to use bitfields to synchronize parallel
algorithms.
(*) Even in cases where bitfields are protected by locks, all fields
in a given bitfield must be protected by one lock. If two fields
in a given bitfield are protected by different locks, the compiler's
non-atomic read-modify-write sequences can cause an update to one
field to corrupt the value of an adjacent field.
btrfs_space_info has a bitfield sharing an underlying word consisting of
the fields full, chunk_alloc, and flush:
struct btrfs_space_info {
struct btrfs_fs_info * fs_info; /* 0 8 */
struct btrfs_space_info * parent; /* 8 8 */
...
int clamp; /* 172 4 */
unsigned int full:1; /* 176: 0 4 */
unsigned int chunk_alloc:1; /* 176: 1 4 */
unsigned int flush:1; /* 176: 2 4 */
...
Therefore, to be safe from parallel read-modify-writes losing a write to
one of the bitfield members protected by a lock, all writes to all the
bitfields must use the lock. They almost universally do, except for
btrfs_clear_space_info_full() which iterates over the space_infos and
writes out found->full = 0 without a lock.
Imagine that we have one thread completing a transaction in which we
finished deleting a block_group and are thus calling
btrfs_clear_space_info_full() while simultaneously the data reclaim
ticket infrastructure is running do_async_reclaim_data_space():
T1 T2
btrfs_commit_transaction
btrfs_clear_space_info_full
data_sinfo->full = 0
READ: full:0, chunk_alloc:0, flush:1
do_async_reclaim_data_space(data_sinfo)
spin_lock(&space_info->lock);
if(list_empty(tickets))
space_info->flush = 0;
READ: full: 0, chunk_alloc:0, flush:1
MOD/WRITE: full: 0, chunk_alloc:0, flush:0
spin_unlock(&space_info->lock);
return;
MOD/WRITE: full:0, chunk_alloc:0, flush:1
and now data_sinfo->flush is 1 but the reclaim worker has exited. This
breaks the invariant that flush is 0 iff there is no work queued or
running. Once this invariant is violated, future allocations that go
into __reserve_bytes() will add tickets to space_info->tickets but will
see space_info->flush is set to 1 and not queue the work. After this,
they will block forever on the resulting ticket, as it is now impossible
to kick the worker again.
I also confirmed by looking at the assembly of the affected kernel that
it is doing RMW operations. For example, to set the flush (3rd) bit to 0,
the assembly is:
andb $0xfb,0x60(%rbx)
and similarly for setting the full (1st) bit to 0:
andb $0xfe,-0x20(%rax)
So I think this is really a bug on practical systems. I have observed
a number of systems in this exact state, but am currently unable to
reproduce it.
Rather than leaving this footgun lying around for the future, take
advantage of the fact that there is room in the struct anyway, and that
it is already quite large and simply change the three bitfield members to
bools. This avoids writes to space_info->full having any effect on
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: Delay the unmapping of the buffer
On WCN3990, we are seeing a rare scenario where copy engine hardware is
sending a copy complete interrupt to the host driver while still
processing the buffer that the driver has sent, this is leading into an
SMMU fault triggering kernel panic. This is happening on copy engine
channel 3 (CE3) where the driver normally enqueues WMI commands to the
firmware. Upon receiving a copy complete interrupt, host driver will
immediately unmap and frees the buffer presuming that hardware has
processed the buffer. In the issue case, upon receiving copy complete
interrupt, host driver will unmap and free the buffer but since hardware
is still accessing the buffer (which in this case got unmapped in
parallel), SMMU hardware will trigger an SMMU fault resulting in a
kernel panic.
In order to avoid this, as a work around, add a delay before unmapping
the copy engine source DMA buffer. This is conditionally done for
WCN3990 and only for the CE3 channel where issue is seen.
Below is the crash signature:
wifi smmu error: kernel: [ 10.120965] arm-smmu 15000000.iommu: Unhandled
context fault: fsr=0x402, iova=0x7fdfd8ac0,
fsynr=0x500003,cbfrsynra=0xc1, cb=6 arm-smmu 15000000.iommu: Unhandled
context fault:fsr=0x402, iova=0x7fe06fdc0, fsynr=0x710003,
cbfrsynra=0xc1, cb=6 qcom-q6v5-mss 4080000.remoteproc: fatal error
received: err_qdi.c:1040:EF:wlan_process:0x1:WLAN RT:0x2091:
cmnos_thread.c:3998:Asserted in copy_engine.c:AXI_ERROR_DETECTED:2149
remoteproc remoteproc0: crash detected in
4080000.remoteproc: type fatal error <3> remoteproc remoteproc0:
handling crash #1 in 4080000.remoteproc
pc : __arm_lpae_unmap+0x500/0x514
lr : __arm_lpae_unmap+0x4bc/0x514
sp : ffffffc011ffb530
x29: ffffffc011ffb590 x28: 0000000000000000
x27: 0000000000000000 x26: 0000000000000004
x25: 0000000000000003 x24: ffffffc011ffb890
x23: ffffffa762ef9be0 x22: ffffffa77244ef00
x21: 0000000000000009 x20: 00000007fff7c000
x19: 0000000000000003 x18: 0000000000000000
x17: 0000000000000004 x16: ffffffd7a357d9f0
x15: 0000000000000000 x14: 00fd5d4fa7ffffff
x13: 000000000000000e x12: 0000000000000000
x11: 00000000ffffffff x10: 00000000fffffe00
x9 : 000000000000017c x8 : 000000000000000c
x7 : 0000000000000000 x6 : ffffffa762ef9000
x5 : 0000000000000003 x4 : 0000000000000004
x3 : 0000000000001000 x2 : 00000007fff7c000
x1 : ffffffc011ffb890 x0 : 0000000000000000 Call trace:
__arm_lpae_unmap+0x500/0x514
__arm_lpae_unmap+0x4bc/0x514
__arm_lpae_unmap+0x4bc/0x514
arm_lpae_unmap_pages+0x78/0xa4
arm_smmu_unmap_pages+0x78/0x104
__iommu_unmap+0xc8/0x1e4
iommu_unmap_fast+0x38/0x48
__iommu_dma_unmap+0x84/0x104
iommu_dma_free+0x34/0x50
dma_free_attrs+0xa4/0xd0
ath10k_htt_rx_free+0xc4/0xf4 [ath10k_core] ath10k_core_stop+0x64/0x7c
[ath10k_core]
ath10k_halt+0x11c/0x180 [ath10k_core]
ath10k_stop+0x54/0x94 [ath10k_core]
drv_stop+0x48/0x1c8 [mac80211]
ieee80211_do_open+0x638/0x77c [mac80211] ieee80211_open+0x48/0x5c
[mac80211]
__dev_open+0xb4/0x174
__dev_change_flags+0xc4/0x1dc
dev_change_flags+0x3c/0x7c
devinet_ioctl+0x2b4/0x580
inet_ioctl+0xb0/0x1b4
sock_do_ioctl+0x4c/0x16c
compat_ifreq_ioctl+0x1cc/0x35c
compat_sock_ioctl+0x110/0x2ac
__arm64_compat_sys_ioctl+0xf4/0x3e0
el0_svc_common+0xb4/0x17c
el0_svc_compat_handler+0x2c/0x58
el0_svc_compat+0x8/0x2c
Tested-on: WCN3990 hw1.0 SNOC WLAN.HL.2.0-01387-QCAHLSWMTPLZ-1 |