| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Suppress a kernel complaint in qla_create_qpair()
[ 12.323788] BUG: using smp_processor_id() in preemptible [00000000] code: systemd-udevd/1020
[ 12.332297] caller is qla2xxx_create_qpair+0x32a/0x5d0 [qla2xxx]
[ 12.338417] CPU: 7 PID: 1020 Comm: systemd-udevd Tainted: G I --------- --- 5.14.0-29.el9.x86_64 #1
[ 12.348827] Hardware name: Dell Inc. PowerEdge R610/0F0XJ6, BIOS 6.6.0 05/22/2018
[ 12.356356] Call Trace:
[ 12.358821] dump_stack_lvl+0x34/0x44
[ 12.362514] check_preemption_disabled+0xd9/0xe0
[ 12.367164] qla2xxx_create_qpair+0x32a/0x5d0 [qla2xxx]
[ 12.372481] qla2x00_probe_one+0xa3a/0x1b80 [qla2xxx]
[ 12.377617] ? _raw_spin_lock_irqsave+0x19/0x40
[ 12.384284] local_pci_probe+0x42/0x80
[ 12.390162] ? pci_match_device+0xd7/0x110
[ 12.396366] pci_device_probe+0xfd/0x1b0
[ 12.402372] really_probe+0x1e7/0x3e0
[ 12.408114] __driver_probe_device+0xfe/0x180
[ 12.414544] driver_probe_device+0x1e/0x90
[ 12.420685] __driver_attach+0xc0/0x1c0
[ 12.426536] ? __device_attach_driver+0xe0/0xe0
[ 12.433061] ? __device_attach_driver+0xe0/0xe0
[ 12.439538] bus_for_each_dev+0x78/0xc0
[ 12.445294] bus_add_driver+0x12b/0x1e0
[ 12.451021] driver_register+0x8f/0xe0
[ 12.456631] ? 0xffffffffc07bc000
[ 12.461773] qla2x00_module_init+0x1be/0x229 [qla2xxx]
[ 12.468776] do_one_initcall+0x44/0x200
[ 12.474401] ? load_module+0xad3/0xba0
[ 12.479908] ? kmem_cache_alloc_trace+0x45/0x410
[ 12.486268] do_init_module+0x5c/0x280
[ 12.491730] __do_sys_init_module+0x12e/0x1b0
[ 12.497785] do_syscall_64+0x3b/0x90
[ 12.503029] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 12.509764] RIP: 0033:0x7f554f73ab2e |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: fix null ptr deref on hci_sync_conn_complete_evt
This event is just specified for SCO and eSCO link types.
On the reception of a HCI_Synchronous_Connection_Complete for a BDADDR
of an existing LE connection, LE link type and a status that triggers the
second case of the packet processing a NULL pointer dereference happens,
as conn->link is NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: Ignore multiple conn complete events
When one of the three connection complete events is received multiple
times for the same handle, the device is registered multiple times which
leads to memory corruptions. Therefore, consequent events for a single
connection are ignored.
The conn->state can hold different values, therefore HCI_CONN_HANDLE_UNSET
is introduced to identify new connections. To make sure the events do not
contain this or another invalid handle HCI_CONN_HANDLE_MAX and checks
are introduced.
Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=215497 |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum: Guard against invalid local ports
When processing events generated by the device's firmware, the driver
protects itself from events reported for non-existent local ports, but
not for the CPU port (local port 0), which exists, but does not have all
the fields as any local port.
This can result in a NULL pointer dereference when trying access
'struct mlxsw_sp_port' fields which are not initialized for CPU port.
Commit 63b08b1f6834 ("mlxsw: spectrum: Protect driver from buggy firmware")
already handled such issue by bailing early when processing a PUDE event
reported for the CPU port.
Generalize the approach by moving the check to a common function and
making use of it in all relevant places. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mce: Work around an erratum on fast string copy instructions
A rare kernel panic scenario can happen when the following conditions
are met due to an erratum on fast string copy instructions:
1) An uncorrected error.
2) That error must be in first cache line of a page.
3) Kernel must execute page_copy from the page immediately before that
page.
The fast string copy instructions ("REP; MOVS*") could consume an
uncorrectable memory error in the cache line _right after_ the desired
region to copy and raise an MCE.
Bit 0 of MSR_IA32_MISC_ENABLE can be cleared to disable fast string
copy and will avoid such spurious machine checks. However, that is less
preferable due to the permanent performance impact. Considering memory
poison is rare, it's desirable to keep fast string copy enabled until an
MCE is seen.
Intel has confirmed the following:
1. The CPU erratum of fast string copy only applies to Skylake,
Cascade Lake and Cooper Lake generations.
Directly return from the MCE handler:
2. Will result in complete execution of the "REP; MOVS*" with no data
loss or corruption.
3. Will not result in another MCE firing on the next poisoned cache line
due to "REP; MOVS*".
4. Will resume execution from a correct point in code.
5. Will result in the same instruction that triggered the MCE firing a
second MCE immediately for any other software recoverable data fetch
errors.
6. Is not safe without disabling the fast string copy, as the next fast
string copy of the same buffer on the same CPU would result in a PANIC
MCE.
This should mitigate the erratum completely with the only caveat that
the fast string copy is disabled on the affected hyper thread thus
performance degradation.
This is still better than the OS crashing on MCEs raised on an
irrelevant process due to "REP; MOVS*' accesses in a kernel context,
e.g., copy_page.
Injected errors on 1st cache line of 8 anonymous pages of process
'proc1' and observed MCE consumption from 'proc2' with no panic
(directly returned).
Without the fix, the host panicked within a few minutes on a
random 'proc2' process due to kernel access from copy_page.
[ bp: Fix comment style + touch ups, zap an unlikely(), improve the
quirk function's readability. ] |
| In the Linux kernel, the following vulnerability has been resolved:
dm ioctl: prevent potential spectre v1 gadget
It appears like cmd could be a Spectre v1 gadget as it's supplied by a
user and used as an array index. Prevent the contents of kernel memory
from being leaked to userspace via speculative execution by using
array_index_nospec. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix tag leaks on error
In pm8001_chip_set_dev_state_req(), pm8001_chip_fw_flash_update_req(),
pm80xx_chip_phy_ctl_req() and pm8001_chip_reg_dev_req() add missing calls
to pm8001_tag_free() to free the allocated tag when pm8001_mpi_build_cmd()
fails.
Similarly, in pm8001_exec_internal_task_abort(), if the chip ->task_abort
method fails, the tag allocated for the abort request task must be
freed. Add the missing call to pm8001_tag_free(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix task leak in pm8001_send_abort_all()
In pm8001_send_abort_all(), make sure to free the allocated sas task
if pm8001_tag_alloc() or pm8001_mpi_build_cmd() fail. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix memory leak in pm8001_chip_fw_flash_update_req()
In pm8001_chip_fw_flash_update_build(), if
pm8001_chip_fw_flash_update_build() fails, the struct fw_control_ex
allocated must be freed. |
| In the Linux kernel, the following vulnerability has been resolved:
mips: ralink: fix a refcount leak in ill_acc_of_setup()
of_node_put(np) needs to be called when pdev == NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix use after free in hci_send_acl
This fixes the following trace caused by receiving
HCI_EV_DISCONN_PHY_LINK_COMPLETE which does call hci_conn_del without
first checking if conn->type is in fact AMP_LINK and in case it is
do properly cleanup upper layers with hci_disconn_cfm:
==================================================================
BUG: KASAN: use-after-free in hci_send_acl+0xaba/0xc50
Read of size 8 at addr ffff88800e404818 by task bluetoothd/142
CPU: 0 PID: 142 Comm: bluetoothd Not tainted
5.17.0-rc5-00006-gda4022eeac1a #7
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x45/0x59
print_address_description.constprop.0+0x1f/0x150
kasan_report.cold+0x7f/0x11b
hci_send_acl+0xaba/0xc50
l2cap_do_send+0x23f/0x3d0
l2cap_chan_send+0xc06/0x2cc0
l2cap_sock_sendmsg+0x201/0x2b0
sock_sendmsg+0xdc/0x110
sock_write_iter+0x20f/0x370
do_iter_readv_writev+0x343/0x690
do_iter_write+0x132/0x640
vfs_writev+0x198/0x570
do_writev+0x202/0x280
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RSP: 002b:00007ffce8a099b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000014
Code: 0f 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3
0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 14 00 00 00 0f 05
<48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 89 54 24 1c 48 89 74 24 10
RDX: 0000000000000001 RSI: 00007ffce8a099e0 RDI: 0000000000000015
RAX: ffffffffffffffda RBX: 00007ffce8a099e0 RCX: 00007f788fc3cf77
R10: 00007ffce8af7080 R11: 0000000000000246 R12: 000055e4ccf75580
RBP: 0000000000000015 R08: 0000000000000002 R09: 0000000000000001
</TASK>
R13: 000055e4ccf754a0 R14: 000055e4ccf75cd0 R15: 000055e4ccf4a6b0
Allocated by task 45:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x81/0xa0
hci_chan_create+0x9a/0x2f0
l2cap_conn_add.part.0+0x1a/0xdc0
l2cap_connect_cfm+0x236/0x1000
le_conn_complete_evt+0x15a7/0x1db0
hci_le_conn_complete_evt+0x226/0x2c0
hci_le_meta_evt+0x247/0x450
hci_event_packet+0x61b/0xe90
hci_rx_work+0x4d5/0xc50
process_one_work+0x8fb/0x15a0
worker_thread+0x576/0x1240
kthread+0x29d/0x340
ret_from_fork+0x1f/0x30
Freed by task 45:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_set_free_info+0x20/0x30
__kasan_slab_free+0xfb/0x130
kfree+0xac/0x350
hci_conn_cleanup+0x101/0x6a0
hci_conn_del+0x27e/0x6c0
hci_disconn_phylink_complete_evt+0xe0/0x120
hci_event_packet+0x812/0xe90
hci_rx_work+0x4d5/0xc50
process_one_work+0x8fb/0x15a0
worker_thread+0x576/0x1240
kthread+0x29d/0x340
ret_from_fork+0x1f/0x30
The buggy address belongs to the object at ffff88800c0f0500
The buggy address is located 24 bytes inside of
which belongs to the cache kmalloc-128 of size 128
The buggy address belongs to the page:
128-byte region [ffff88800c0f0500, ffff88800c0f0580)
flags: 0x100000000000200(slab|node=0|zone=1)
page:00000000fe45cd86 refcount:1 mapcount:0
mapping:0000000000000000 index:0x0 pfn:0xc0f0
raw: 0000000000000000 0000000080100010 00000001ffffffff
0000000000000000
raw: 0100000000000200 ffffea00003a2c80 dead000000000004
ffff8880078418c0
page dumped because: kasan: bad access detected
ffff88800c0f0400: 00 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc
Memory state around the buggy address:
>ffff88800c0f0500: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88800c0f0480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88800c0f0580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: revisit gc autotuning
as of commit 4608fdfc07e1
("netfilter: conntrack: collect all entries in one cycle")
conntrack gc was changed to run every 2 minutes.
On systems where conntrack hash table is set to large value, most evictions
happen from gc worker rather than the packet path due to hash table
distribution.
This causes netlink event overflows when events are collected.
This change collects average expiry of scanned entries and
reschedules to the average remaining value, within 1 to 60 second interval.
To avoid event overflows, reschedule after each bucket and add a
limit for both run time and number of evictions per run.
If more entries have to be evicted, reschedule and restart 1 jiffy
into the future. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4.2: fix reference count leaks in _nfs42_proc_copy_notify()
[You don't often get email from xiongx18@fudan.edu.cn. Learn why this is important at http://aka.ms/LearnAboutSenderIdentification.]
The reference counting issue happens in two error paths in the
function _nfs42_proc_copy_notify(). In both error paths, the function
simply returns the error code and forgets to balance the refcount of
object `ctx`, bumped by get_nfs_open_context() earlier, which may
cause refcount leaks.
Fix it by balancing refcount of the `ctx` object before the function
returns in both error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio_console: eliminate anonymous module_init & module_exit
Eliminate anonymous module_init() and module_exit(), which can lead to
confusion or ambiguity when reading System.map, crashes/oops/bugs,
or an initcall_debug log.
Give each of these init and exit functions unique driver-specific
names to eliminate the anonymous names.
Example 1: (System.map)
ffffffff832fc78c t init
ffffffff832fc79e t init
ffffffff832fc8f8 t init
Example 2: (initcall_debug log)
calling init+0x0/0x12 @ 1
initcall init+0x0/0x12 returned 0 after 15 usecs
calling init+0x0/0x60 @ 1
initcall init+0x0/0x60 returned 0 after 2 usecs
calling init+0x0/0x9a @ 1
initcall init+0x0/0x9a returned 0 after 74 usecs |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Avoid writeback threads getting stuck in mempool_alloc()
In a low memory situation, allow the NFS writeback code to fail without
getting stuck in infinite loops in mempool_alloc(). |
| In the Linux kernel, the following vulnerability has been resolved:
mmmremap.c: avoid pointless invalidate_range_start/end on mremap(old_size=0)
If an mremap() syscall with old_size=0 ends up in move_page_tables(), it
will call invalidate_range_start()/invalidate_range_end() unnecessarily,
i.e. with an empty range.
This causes a WARN in KVM's mmu_notifier. In the past, empty ranges
have been diagnosed to be off-by-one bugs, hence the WARNing. Given the
low (so far) number of unique reports, the benefits of detecting more
buggy callers seem to outweigh the cost of having to fix cases such as
this one, where userspace is doing something silly. In this particular
case, an early return from move_page_tables() is enough to fix the
issue. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix qgroup reserve overflow the qgroup limit
We use extent_changeset->bytes_changed in qgroup_reserve_data() to record
how many bytes we set for EXTENT_QGROUP_RESERVED state. Currently the
bytes_changed is set as "unsigned int", and it will overflow if we try to
fallocate a range larger than 4GiB. The result is we reserve less bytes
and eventually break the qgroup limit.
Unlike regular buffered/direct write, which we use one changeset for
each ordered extent, which can never be larger than 256M. For
fallocate, we use one changeset for the whole range, thus it no longer
respects the 256M per extent limit, and caused the problem.
The following example test script reproduces the problem:
$ cat qgroup-overflow.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
# Set qgroup limit to 2GiB.
btrfs quota enable $MNT
btrfs qgroup limit 2G $MNT
# Try to fallocate a 3GiB file. This should fail.
echo
echo "Try to fallocate a 3GiB file..."
fallocate -l 3G $MNT/3G.file
# Try to fallocate a 5GiB file.
echo
echo "Try to fallocate a 5GiB file..."
fallocate -l 5G $MNT/5G.file
# See we break the qgroup limit.
echo
sync
btrfs qgroup show -r $MNT
umount $MNT
When running the test:
$ ./qgroup-overflow.sh
(...)
Try to fallocate a 3GiB file...
fallocate: fallocate failed: Disk quota exceeded
Try to fallocate a 5GiB file...
qgroupid rfer excl max_rfer
-------- ---- ---- --------
0/5 5.00GiB 5.00GiB 2.00GiB
Since we have no control of how bytes_changed is used, it's better to
set it to u64. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: Restrict usage of GPIO chip irq members before initialization
GPIO chip irq members are exposed before they could be completely
initialized and this leads to race conditions.
One such issue was observed for the gc->irq.domain variable which
was accessed through the I2C interface in gpiochip_to_irq() before
it could be initialized by gpiochip_add_irqchip(). This resulted in
Kernel NULL pointer dereference.
Following are the logs for reference :-
kernel: Call Trace:
kernel: gpiod_to_irq+0x53/0x70
kernel: acpi_dev_gpio_irq_get_by+0x113/0x1f0
kernel: i2c_acpi_get_irq+0xc0/0xd0
kernel: i2c_device_probe+0x28a/0x2a0
kernel: really_probe+0xf2/0x460
kernel: RIP: 0010:gpiochip_to_irq+0x47/0xc0
To avoid such scenarios, restrict usage of GPIO chip irq members before
they are completely initialized. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc: Fix virt_addr_valid() for 64-bit Book3E & 32-bit
mpe: On 64-bit Book3E vmalloc space starts at 0x8000000000000000.
Because of the way __pa() works we have:
__pa(0x8000000000000000) == 0, and therefore
virt_to_pfn(0x8000000000000000) == 0, and therefore
virt_addr_valid(0x8000000000000000) == true
Which is wrong, virt_addr_valid() should be false for vmalloc space.
In fact all vmalloc addresses that alias with a valid PFN will return
true from virt_addr_valid(). That can cause bugs with hardened usercopy
as described below by Kefeng Wang:
When running ethtool eth0 on 64-bit Book3E, a BUG occurred:
usercopy: Kernel memory exposure attempt detected from SLUB object not in SLUB page?! (offset 0, size 1048)!
kernel BUG at mm/usercopy.c:99
...
usercopy_abort+0x64/0xa0 (unreliable)
__check_heap_object+0x168/0x190
__check_object_size+0x1a0/0x200
dev_ethtool+0x2494/0x2b20
dev_ioctl+0x5d0/0x770
sock_do_ioctl+0xf0/0x1d0
sock_ioctl+0x3ec/0x5a0
__se_sys_ioctl+0xf0/0x160
system_call_exception+0xfc/0x1f0
system_call_common+0xf8/0x200
The code shows below,
data = vzalloc(array_size(gstrings.len, ETH_GSTRING_LEN));
copy_to_user(useraddr, data, gstrings.len * ETH_GSTRING_LEN))
The data is alloced by vmalloc(), virt_addr_valid(ptr) will return true
on 64-bit Book3E, which leads to the panic.
As commit 4dd7554a6456 ("powerpc/64: Add VIRTUAL_BUG_ON checks for __va
and __pa addresses") does, make sure the virt addr above PAGE_OFFSET in
the virt_addr_valid() for 64-bit, also add upper limit check to make
sure the virt is below high_memory.
Meanwhile, for 32-bit PAGE_OFFSET is the virtual address of the start
of lowmem, high_memory is the upper low virtual address, the check is
suitable for 32-bit, this will fix the issue mentioned in commit
602946ec2f90 ("powerpc: Set max_mapnr correctly") too.
On 32-bit there is a similar problem with high memory, that was fixed in
commit 602946ec2f90 ("powerpc: Set max_mapnr correctly"), but that
commit breaks highmem and needs to be reverted.
We can't easily fix __pa(), we have code that relies on its current
behaviour. So for now add extra checks to virt_addr_valid().
For 64-bit Book3S the extra checks are not necessary, the combination of
virt_to_pfn() and pfn_valid() should yield the correct result, but they
are harmless.
[mpe: Add additional change log detail] |
| In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Deactivate sysctl_record_panic_msg by default in isolated guests
hv_panic_page might contain guest-sensitive information, do not dump it
over to Hyper-V by default in isolated guests.
While at it, update some comments in hyperv_{panic,die}_event(). |