| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Zohocorp ManageEngine ADManager Plus versions below 7230 are vulnerable to Path Traversal in the User Management module |
| Improper Neutralization of Special Elements used in a Command ('Command Injection') vulnerability in Vivotek Affected device model numbers are FD8365, FD8365v2, FD9165, FD9171, FD9187, FD9189, FD9365, FD9371, FD9381, FD9387, FD9389, FD9391,FE9180,FE9181, FE9191, FE9381, FE9382, FE9391, FE9582, IB9365, IB93587LPR, IB9371,IB9381, IB9387, IB9389, IB939,IP9165,IP9171, IP9172, IP9181, IP9191, IT9389, MA9321, MA9322, MS9321, MS9390, TB9330 (Firmware modules) allows OS Command Injection.This issue affects Affected device model numbers are FD8365, FD8365v2, FD9165, FD9171, FD9187, FD9189, FD9365, FD9371, FD9381, FD9387, FD9389, FD9391,FE9180,FE9181, FE9191, FE9381, FE9382, FE9391, FE9582, IB9365, IB93587LPR, IB9371,IB9381, IB9387, IB9389, IB939,IP9165,IP9171, IP9172, IP9181, IP9191, IT9389, MA9321, MA9322, MS9321, MS9390, TB9330: 0100a, 0106a, 0106b, 0107a, 0107b_1, 0109a, 0112a, 0113a, 0113d, 0117b, 0119e, 0120b, 0121, 0121d, 0121d_48573_1, 0122e, 0124d_48573_1, 012501, 012502, 0125c. |
| phpgurukul News Portal Project V4.1 is vulnerable to SQL Injection in check_availablity.php. |
| phpgurukul News Portal Project V4.1 has File Upload Vulnerability via upload.php, which enables the upload of files of any format to the server without identity authentication. |
| Zohocorp ManageEngine ADSelfService Plus versions before 6519 are vulnerable to Authentication Bypass due to improper filter configurations. |
| A flaw was found in Eclipse Che che-machine-exec. This vulnerability allows unauthenticated remote arbitrary command execution and secret exfiltration (SSH keys, tokens, etc.) from other users' Developer Workspace containers, via an unauthenticated JSON-RPC / websocket API exposed on TCP port 3333. |
| OS Command Injection Remote Code Execution Vulnerability in API in Progress LoadMaster allows an authenticated attacker with “User Administration” permissions to execute arbitrary commands on the LoadMaster appliance by exploiting unsanitized input in the API input parameters |
| OS Command Injection Remote Code Execution Vulnerability in API in Progress LoadMaster allows an authenticated attacker with “User Administration” permissions to execute arbitrary commands on the LoadMaster appliance by exploiting unsanitized input in the API input parameters |
| The EventPrime - Events Calendar, Bookings and Tickets plugin for WordPress is vulnerable to Sensitive Information Exposure in all versions up to, and including, 4.2.7.0 via the REST API. This makes it possible for unauthenticated attackers to extract sensitive booking data including user names, email addresses, ticket details, payment information, and order keys when the API is enabled by an administrator. The vulnerability was partially patched in version 4.2.7.0. |
| A vulnerability has been identified in the installation/uninstallation of the Nessus Agent Tray App on Windows Hosts which could lead to escalation of privileges. |
| An arbitrary file upload vulnerability in the /utils/uploadFile component of Hubert Imoveis e Administracao Ltda Hub v2.0 1.27.3 allows attackers to execute arbitrary code via uploading a crafted PDF file. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: Verify inode mode when loading from disk
syzbot is reporting that S_IFMT bits of inode->i_mode can become bogus when
the S_IFMT bits of the 16bits "mode" field loaded from disk are corrupted.
According to [1], the permissions field was treated as reserved in Mac OS
8 and 9. According to [2], the reserved field was explicitly initialized
with 0, and that field must remain 0 as long as reserved. Therefore, when
the "mode" field is not 0 (i.e. no longer reserved), the file must be
S_IFDIR if dir == 1, and the file must be one of S_IFREG/S_IFLNK/S_IFCHR/
S_IFBLK/S_IFIFO/S_IFSOCK if dir == 0. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix XDP_TX path
For XDP_TX action in bnxt_rx_xdp(), clearing of the event flags is not
correct. __bnxt_poll_work() -> bnxt_rx_pkt() -> bnxt_rx_xdp() may be
looping within NAPI and some event flags may be set in earlier
iterations. In particular, if BNXT_TX_EVENT is set earlier indicating
some XDP_TX packets are ready and pending, it will be cleared if it is
XDP_TX action again. Normally, we will set BNXT_TX_EVENT again when we
successfully call __bnxt_xmit_xdp(). But if the TX ring has no more
room, the flag will not be set. This will cause the TX producer to be
ahead but the driver will not hit the TX doorbell.
For multi-buf XDP_TX, there is no need to clear the event flags and set
BNXT_AGG_EVENT. The BNXT_AGG_EVENT flag should have been set earlier in
bnxt_rx_pkt().
The visible symptom of this is that the RX ring associated with the
TX XDP ring will eventually become empty and all packets will be dropped.
Because this condition will cause the driver to not refill the RX ring
seeing that the TX ring has forever pending XDP_TX packets.
The fix is to only clear BNXT_RX_EVENT when we have successfully
called __bnxt_xmit_xdp(). |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid updating compression context during writeback
Bai, Shuangpeng <sjb7183@psu.edu> reported a bug as below:
Oops: divide error: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 11441 Comm: syz.0.46 Not tainted 6.17.0 #1 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:f2fs_all_cluster_page_ready+0x106/0x550 fs/f2fs/compress.c:857
Call Trace:
<TASK>
f2fs_write_cache_pages fs/f2fs/data.c:3078 [inline]
__f2fs_write_data_pages fs/f2fs/data.c:3290 [inline]
f2fs_write_data_pages+0x1c19/0x3600 fs/f2fs/data.c:3317
do_writepages+0x38e/0x640 mm/page-writeback.c:2634
filemap_fdatawrite_wbc mm/filemap.c:386 [inline]
__filemap_fdatawrite_range mm/filemap.c:419 [inline]
file_write_and_wait_range+0x2ba/0x3e0 mm/filemap.c:794
f2fs_do_sync_file+0x6e6/0x1b00 fs/f2fs/file.c:294
generic_write_sync include/linux/fs.h:3043 [inline]
f2fs_file_write_iter+0x76e/0x2700 fs/f2fs/file.c:5259
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x7e9/0xe00 fs/read_write.c:686
ksys_write+0x19d/0x2d0 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xf7/0x470 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The bug was triggered w/ below race condition:
fsync setattr ioctl
- f2fs_do_sync_file
- file_write_and_wait_range
- f2fs_write_cache_pages
: inode is non-compressed
: cc.cluster_size =
F2FS_I(inode)->i_cluster_size = 0
- tag_pages_for_writeback
- f2fs_setattr
- truncate_setsize
- f2fs_truncate
- f2fs_fileattr_set
- f2fs_setflags_common
- set_compress_context
: F2FS_I(inode)->i_cluster_size = 4
: set_inode_flag(inode, FI_COMPRESSED_FILE)
- f2fs_compressed_file
: return true
- f2fs_all_cluster_page_ready
: "pgidx % cc->cluster_size" trigger dividing 0 issue
Let's change as below to fix this issue:
- introduce a new atomic type variable .writeback in structure f2fs_inode_info
to track the number of threads which calling f2fs_write_cache_pages().
- use .i_sem lock to protect .writeback update.
- check .writeback before update compression context in f2fs_setflags_common()
to avoid race w/ ->writepages. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: fsl-cpm: Check length parity before switching to 16 bit mode
Commit fc96ec826bce ("spi: fsl-cpm: Use 16 bit mode for large transfers
with even size") failed to make sure that the size is really even
before switching to 16 bit mode. Until recently the problem went
unnoticed because kernfs uses a pre-allocated bounce buffer of size
PAGE_SIZE for reading EEPROM.
But commit 8ad6249c51d0 ("eeprom: at25: convert to spi-mem API")
introduced an additional dynamically allocated bounce buffer whose size
is exactly the size of the transfer, leading to a buffer overrun in
the fsl-cpm driver when that size is odd.
Add the missing length parity verification and remain in 8 bit mode
when the length is not even. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix missing hfs_bnode_get() in __hfs_bnode_create
When sync() and link() are called concurrently, both threads may
enter hfs_bnode_find() without finding the node in the hash table
and proceed to create it.
Thread A:
hfsplus_write_inode()
-> hfsplus_write_system_inode()
-> hfs_btree_write()
-> hfs_bnode_find(tree, 0)
-> __hfs_bnode_create(tree, 0)
Thread B:
hfsplus_create_cat()
-> hfs_brec_insert()
-> hfs_bnode_split()
-> hfs_bmap_alloc()
-> hfs_bnode_find(tree, 0)
-> __hfs_bnode_create(tree, 0)
In this case, thread A creates the bnode, sets refcnt=1, and hashes it.
Thread B also tries to create the same bnode, notices it has already
been inserted, drops its own instance, and uses the hashed one without
getting the node.
```
node2 = hfs_bnode_findhash(tree, cnid);
if (!node2) { <- Thread A
hash = hfs_bnode_hash(cnid);
node->next_hash = tree->node_hash[hash];
tree->node_hash[hash] = node;
tree->node_hash_cnt++;
} else { <- Thread B
spin_unlock(&tree->hash_lock);
kfree(node);
wait_event(node2->lock_wq,
!test_bit(HFS_BNODE_NEW, &node2->flags));
return node2;
}
```
However, hfs_bnode_find() requires each call to take a reference.
Here both threads end up setting refcnt=1. When they later put the node,
this triggers:
BUG_ON(!atomic_read(&node->refcnt))
In this scenario, Thread B in fact finds the node in the hash table
rather than creating a new one, and thus must take a reference.
Fix this by calling hfs_bnode_get() when reusing a bnode newly created by
another thread to ensure the refcount is updated correctly.
A similar bug was fixed in HFS long ago in commit
a9dc087fd3c4 ("fix missing hfs_bnode_get() in __hfs_bnode_create")
but the same issue remained in HFS+ until now. |
| In the Linux kernel, the following vulnerability has been resolved:
net/handshake: duplicate handshake cancellations leak socket
When a handshake request is cancelled it is removed from the
handshake_net->hn_requests list, but it is still present in the
handshake_rhashtbl until it is destroyed.
If a second cancellation request arrives for the same handshake request,
then remove_pending() will return false... and assuming
HANDSHAKE_F_REQ_COMPLETED isn't set in req->hr_flags, we'll continue
processing through the out_true label, where we put another reference on
the sock and a refcount underflow occurs.
This can happen for example if a handshake times out - particularly if
the SUNRPC client sends the AUTH_TLS probe to the server but doesn't
follow it up with the ClientHello due to a problem with tlshd. When the
timeout is hit on the server, the server will send a FIN, which triggers
a cancellation request via xs_reset_transport(). When the timeout is
hit on the client, another cancellation request happens via
xs_tls_handshake_sync().
Add a test_and_set_bit(HANDSHAKE_F_REQ_COMPLETED) in the pending cancel
path so duplicate cancels can be detected. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Avoid unregistering PSP twice
PSP is unregistered twice in:
_mlx5e_remove -> mlx5e_psp_unregister
mlx5e_nic_cleanup -> mlx5e_psp_unregister
This leads to a refcount underflow in some conditions:
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
WARNING: CPU: 2 PID: 1694 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0
[...]
mlx5e_psp_unregister+0x26/0x50 [mlx5_core]
mlx5e_nic_cleanup+0x26/0x90 [mlx5_core]
mlx5e_remove+0xe6/0x1f0 [mlx5_core]
auxiliary_bus_remove+0x18/0x30
device_release_driver_internal+0x194/0x1f0
bus_remove_device+0xc6/0x130
device_del+0x159/0x3c0
mlx5_rescan_drivers_locked+0xbc/0x2a0 [mlx5_core]
[...]
Do not directly remove psp from the _mlx5e_remove path, the PSP cleanup
happens as part of profile cleanup. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/deadline: only set free_cpus for online runqueues
Commit 16b269436b72 ("sched/deadline: Modify cpudl::free_cpus
to reflect rd->online") introduced the cpudl_set/clear_freecpu
functions to allow the cpu_dl::free_cpus mask to be manipulated
by the deadline scheduler class rq_on/offline callbacks so the
mask would also reflect this state.
Commit 9659e1eeee28 ("sched/deadline: Remove cpu_active_mask
from cpudl_find()") removed the check of the cpu_active_mask to
save some processing on the premise that the cpudl::free_cpus
mask already reflected the runqueue online state.
Unfortunately, there are cases where it is possible for the
cpudl_clear function to set the free_cpus bit for a CPU when the
deadline runqueue is offline. When this occurs while a CPU is
connected to the default root domain the flag may retain the bad
state after the CPU has been unplugged. Later, a different CPU
that is transitioning through the default root domain may push a
deadline task to the powered down CPU when cpudl_find sees its
free_cpus bit is set. If this happens the task will not have the
opportunity to run.
One example is outlined here:
https://lore.kernel.org/lkml/20250110233010.2339521-1-opendmb@gmail.com
Another occurs when the last deadline task is migrated from a
CPU that has an offlined runqueue. The dequeue_task member of
the deadline scheduler class will eventually call cpudl_clear
and set the free_cpus bit for the CPU.
This commit modifies the cpudl_clear function to be aware of the
online state of the deadline runqueue so that the free_cpus mask
can be updated appropriately.
It is no longer necessary to manage the mask outside of the
cpudl_set/clear functions so the cpudl_set/clear_freecpu
functions are removed. In addition, since the free_cpus mask is
now only updated under the cpudl lock the code was changed to
use the non-atomic __cpumask functions. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: phy: fsl-usb: Fix use-after-free in delayed work during device removal
The delayed work item otg_event is initialized in fsl_otg_conf() and
scheduled under two conditions:
1. When a host controller binds to the OTG controller.
2. When the USB ID pin state changes (cable insertion/removal).
A race condition occurs when the device is removed via fsl_otg_remove():
the fsl_otg instance may be freed while the delayed work is still pending
or executing. This leads to use-after-free when the work function
fsl_otg_event() accesses the already freed memory.
The problematic scenario:
(detach thread) | (delayed work)
fsl_otg_remove() |
kfree(fsl_otg_dev) //FREE| fsl_otg_event()
| og = container_of(...) //USE
| og-> //USE
Fix this by calling disable_delayed_work_sync() in fsl_otg_remove()
before deallocating the fsl_otg structure. This ensures the delayed work
is properly canceled and completes execution prior to memory deallocation.
This bug was identified through static analysis. |