Search Results (34059 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50096 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/kprobes: Update kcb status flag after singlestepping Fix kprobes to update kcb (kprobes control block) status flag to KPROBE_HIT_SSDONE even if the kp->post_handler is not set. This bug may cause a kernel panic if another INT3 user runs right after kprobes because kprobe_int3_handler() misunderstands the INT3 is kprobe's single stepping INT3.
CVE-2022-50097 1 Linux 1 Linux Kernel 2025-11-19 7.8 High
In the Linux kernel, the following vulnerability has been resolved: video: fbdev: s3fb: Check the size of screen before memset_io() In the function s3fb_set_par(), the value of 'screen_size' is calculated by the user input. If the user provides the improper value, the value of 'screen_size' may larger than 'info->screen_size', which may cause the following bug: [ 54.083733] BUG: unable to handle page fault for address: ffffc90003000000 [ 54.083742] #PF: supervisor write access in kernel mode [ 54.083744] #PF: error_code(0x0002) - not-present page [ 54.083760] RIP: 0010:memset_orig+0x33/0xb0 [ 54.083782] Call Trace: [ 54.083788] s3fb_set_par+0x1ec6/0x4040 [ 54.083806] fb_set_var+0x604/0xeb0 [ 54.083836] do_fb_ioctl+0x234/0x670 Fix the this by checking the value of 'screen_size' before memset_io().
CVE-2022-50098 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix crash due to stale SRB access around I/O timeouts Ensure SRB is returned during I/O timeout error escalation. If that is not possible fail the escalation path. Following crash stack was seen: BUG: unable to handle kernel paging request at 0000002f56aa90f8 IP: qla_chk_edif_rx_sa_delete_pending+0x14/0x30 [qla2xxx] Call Trace: ? qla2x00_status_entry+0x19f/0x1c50 [qla2xxx] ? qla2x00_start_sp+0x116/0x1170 [qla2xxx] ? dma_pool_alloc+0x1d6/0x210 ? mempool_alloc+0x54/0x130 ? qla24xx_process_response_queue+0x548/0x12b0 [qla2xxx] ? qla_do_work+0x2d/0x40 [qla2xxx] ? process_one_work+0x14c/0x390
CVE-2022-50099 1 Linux 1 Linux Kernel 2025-11-19 7.8 High
In the Linux kernel, the following vulnerability has been resolved: video: fbdev: arkfb: Check the size of screen before memset_io() In the function arkfb_set_par(), the value of 'screen_size' is calculated by the user input. If the user provides the improper value, the value of 'screen_size' may larger than 'info->screen_size', which may cause the following bug: [ 659.399066] BUG: unable to handle page fault for address: ffffc90003000000 [ 659.399077] #PF: supervisor write access in kernel mode [ 659.399079] #PF: error_code(0x0002) - not-present page [ 659.399094] RIP: 0010:memset_orig+0x33/0xb0 [ 659.399116] Call Trace: [ 659.399122] arkfb_set_par+0x143f/0x24c0 [ 659.399130] fb_set_var+0x604/0xeb0 [ 659.399161] do_fb_ioctl+0x234/0x670 [ 659.399189] fb_ioctl+0xdd/0x130 Fix the this by checking the value of 'screen_size' before memset_io().
CVE-2022-50100 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/core: Do not requeue task on CPU excluded from cpus_mask The following warning was triggered on a large machine early in boot on a distribution kernel but the same problem should also affect mainline. WARNING: CPU: 439 PID: 10 at ../kernel/workqueue.c:2231 process_one_work+0x4d/0x440 Call Trace: <TASK> rescuer_thread+0x1f6/0x360 kthread+0x156/0x180 ret_from_fork+0x22/0x30 </TASK> Commit c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu") optimises ttwu by queueing a task that is descheduling on the wakelist, but does not check if the task descheduling is still allowed to run on that CPU. In this warning, the problematic task is a workqueue rescue thread which checks if the rescue is for a per-cpu workqueue and running on the wrong CPU. While this is early in boot and it should be possible to create workers, the rescue thread may still used if the MAYDAY_INITIAL_TIMEOUT is reached or MAYDAY_INTERVAL and on a sufficiently large machine, the rescue thread is being used frequently. Tracing confirmed that the task should have migrated properly using the stopper thread to handle the migration. However, a parallel wakeup from udev running on another CPU that does not share CPU cache observes p->on_cpu and uses task_cpu(p), queues the task on the old CPU and triggers the warning. Check that the wakee task that is descheduling is still allowed to run on its current CPU and if not, wait for the descheduling to complete and select an allowed CPU.
CVE-2022-50101 1 Linux 1 Linux Kernel 2025-11-19 7.8 High
In the Linux kernel, the following vulnerability has been resolved: video: fbdev: vt8623fb: Check the size of screen before memset_io() In the function vt8623fb_set_par(), the value of 'screen_size' is calculated by the user input. If the user provides the improper value, the value of 'screen_size' may larger than 'info->screen_size', which may cause the following bug: [ 583.339036] BUG: unable to handle page fault for address: ffffc90005000000 [ 583.339049] #PF: supervisor write access in kernel mode [ 583.339052] #PF: error_code(0x0002) - not-present page [ 583.339074] RIP: 0010:memset_orig+0x33/0xb0 [ 583.339110] Call Trace: [ 583.339118] vt8623fb_set_par+0x11cd/0x21e0 [ 583.339146] fb_set_var+0x604/0xeb0 [ 583.339181] do_fb_ioctl+0x234/0x670 [ 583.339209] fb_ioctl+0xdd/0x130 Fix the this by checking the value of 'screen_size' before memset_io().
CVE-2017-5802 1 Opentext 1 Vertica 2025-11-19 N/A
A Remote Gain Privileged Access vulnerability in HPE Vertica Analytics Platform version v4.1 and later was found.
CVE-2022-50217 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fuse: write inode in fuse_release() A race between write(2) and close(2) allows pages to be dirtied after fuse_flush -> write_inode_now(). If these pages are not flushed from fuse_release(), then there might not be a writable open file later. So any remaining dirty pages must be written back before the file is released. This is a partial revert of the blamed commit.
CVE-2022-50222 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tty: vt: initialize unicode screen buffer syzbot reports kernel infoleak at vcs_read() [1], for buffer can be read immediately after resize operation. Initialize buffer using kzalloc(). ---------- #include <fcntl.h> #include <unistd.h> #include <sys/ioctl.h> #include <linux/fb.h> int main(int argc, char *argv[]) { struct fb_var_screeninfo var = { }; const int fb_fd = open("/dev/fb0", 3); ioctl(fb_fd, FBIOGET_VSCREENINFO, &var); var.yres = 0x21; ioctl(fb_fd, FBIOPUT_VSCREENINFO, &var); return read(open("/dev/vcsu", O_RDONLY), &var, sizeof(var)) == -1; } ----------
CVE-2022-50223 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: LoongArch: cpuinfo: Fix a warning for CONFIG_CPUMASK_OFFSTACK When CONFIG_CPUMASK_OFFSTACK and CONFIG_DEBUG_PER_CPU_MAPS is selected, cpu_max_bits_warn() generates a runtime warning similar as below while we show /proc/cpuinfo. Fix this by using nr_cpu_ids (the runtime limit) instead of NR_CPUS to iterate CPUs. [ 3.052463] ------------[ cut here ]------------ [ 3.059679] WARNING: CPU: 3 PID: 1 at include/linux/cpumask.h:108 show_cpuinfo+0x5e8/0x5f0 [ 3.070072] Modules linked in: efivarfs autofs4 [ 3.076257] CPU: 0 PID: 1 Comm: systemd Not tainted 5.19-rc5+ #1052 [ 3.084034] Hardware name: Loongson Loongson-3A5000-7A1000-1w-V0.1-CRB/Loongson-LS3A5000-7A1000-1w-EVB-V1.21, BIOS Loongson-UDK2018-V2.0.04082-beta7 04/27 [ 3.099465] Stack : 9000000100157b08 9000000000f18530 9000000000cf846c 9000000100154000 [ 3.109127] 9000000100157a50 0000000000000000 9000000100157a58 9000000000ef7430 [ 3.118774] 90000001001578e8 0000000000000040 0000000000000020 ffffffffffffffff [ 3.128412] 0000000000aaaaaa 1ab25f00eec96a37 900000010021de80 900000000101c890 [ 3.138056] 0000000000000000 0000000000000000 0000000000000000 0000000000aaaaaa [ 3.147711] ffff8000339dc220 0000000000000001 0000000006ab4000 0000000000000000 [ 3.157364] 900000000101c998 0000000000000004 9000000000ef7430 0000000000000000 [ 3.167012] 0000000000000009 000000000000006c 0000000000000000 0000000000000000 [ 3.176641] 9000000000d3de08 9000000001639390 90000000002086d8 00007ffff0080286 [ 3.186260] 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1c [ 3.195868] ... [ 3.199917] Call Trace: [ 3.203941] [<90000000002086d8>] show_stack+0x38/0x14c [ 3.210666] [<9000000000cf846c>] dump_stack_lvl+0x60/0x88 [ 3.217625] [<900000000023d268>] __warn+0xd0/0x100 [ 3.223958] [<9000000000cf3c90>] warn_slowpath_fmt+0x7c/0xcc [ 3.231150] [<9000000000210220>] show_cpuinfo+0x5e8/0x5f0 [ 3.238080] [<90000000004f578c>] seq_read_iter+0x354/0x4b4 [ 3.245098] [<90000000004c2e90>] new_sync_read+0x17c/0x1c4 [ 3.252114] [<90000000004c5174>] vfs_read+0x138/0x1d0 [ 3.258694] [<90000000004c55f8>] ksys_read+0x70/0x100 [ 3.265265] [<9000000000cfde9c>] do_syscall+0x7c/0x94 [ 3.271820] [<9000000000202fe4>] handle_syscall+0xc4/0x160 [ 3.281824] ---[ end trace 8b484262b4b8c24c ]---
CVE-2022-50224 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: x86/mmu: Treat NX as a valid SPTE bit for NPT Treat the NX bit as valid when using NPT, as KVM will set the NX bit when the NX huge page mitigation is enabled (mindblowing) and trigger the WARN that fires on reserved SPTE bits being set. KVM has required NX support for SVM since commit b26a71a1a5b9 ("KVM: SVM: Refuse to load kvm_amd if NX support is not available") for exactly this reason, but apparently it never occurred to anyone to actually test NPT with the mitigation enabled. ------------[ cut here ]------------ spte = 0x800000018a600ee7, level = 2, rsvd bits = 0x800f0000001fe000 WARNING: CPU: 152 PID: 15966 at arch/x86/kvm/mmu/spte.c:215 make_spte+0x327/0x340 [kvm] Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 10.48.0 01/27/2022 RIP: 0010:make_spte+0x327/0x340 [kvm] Call Trace: <TASK> tdp_mmu_map_handle_target_level+0xc3/0x230 [kvm] kvm_tdp_mmu_map+0x343/0x3b0 [kvm] direct_page_fault+0x1ae/0x2a0 [kvm] kvm_tdp_page_fault+0x7d/0x90 [kvm] kvm_mmu_page_fault+0xfb/0x2e0 [kvm] npf_interception+0x55/0x90 [kvm_amd] svm_invoke_exit_handler+0x31/0xf0 [kvm_amd] svm_handle_exit+0xf6/0x1d0 [kvm_amd] vcpu_enter_guest+0xb6d/0xee0 [kvm] ? kvm_pmu_trigger_event+0x6d/0x230 [kvm] vcpu_run+0x65/0x2c0 [kvm] kvm_arch_vcpu_ioctl_run+0x355/0x610 [kvm] kvm_vcpu_ioctl+0x551/0x610 [kvm] __se_sys_ioctl+0x77/0xc0 __x64_sys_ioctl+0x1d/0x20 do_syscall_64+0x44/0xa0 entry_SYSCALL_64_after_hwframe+0x46/0xb0 </TASK> ---[ end trace 0000000000000000 ]---
CVE-2022-50227 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: x86/xen: Initialize Xen timer only once Add a check for existing xen timers before initializing a new one. Currently kvm_xen_init_timer() is called on every KVM_XEN_VCPU_ATTR_TYPE_TIMER, which is causing the following ODEBUG crash when vcpu->arch.xen.timer is already set. ODEBUG: init active (active state 0) object type: hrtimer hint: xen_timer_callbac0 RIP: 0010:debug_print_object+0x16e/0x250 lib/debugobjects.c:502 Call Trace: __debug_object_init debug_hrtimer_init debug_init hrtimer_init kvm_xen_init_timer kvm_xen_vcpu_set_attr kvm_arch_vcpu_ioctl kvm_vcpu_ioctl vfs_ioctl
CVE-2022-50228 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: Don't BUG if userspace injects an interrupt with GIF=0 Don't BUG/WARN on interrupt injection due to GIF being cleared, since it's trivial for userspace to force the situation via KVM_SET_VCPU_EVENTS (even if having at least a WARN there would be correct for KVM internally generated injections). kernel BUG at arch/x86/kvm/svm/svm.c:3386! invalid opcode: 0000 [#1] SMP CPU: 15 PID: 926 Comm: smm_test Not tainted 5.17.0-rc3+ #264 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:svm_inject_irq+0xab/0xb0 [kvm_amd] Code: <0f> 0b 0f 1f 00 0f 1f 44 00 00 80 3d ac b3 01 00 00 55 48 89 f5 53 RSP: 0018:ffffc90000b37d88 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88810a234ac0 RCX: 0000000000000006 RDX: 0000000000000000 RSI: ffffc90000b37df7 RDI: ffff88810a234ac0 RBP: ffffc90000b37df7 R08: ffff88810a1fa410 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: ffff888109571000 R14: ffff88810a234ac0 R15: 0000000000000000 FS: 0000000001821380(0000) GS:ffff88846fdc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f74fc550008 CR3: 000000010a6fe000 CR4: 0000000000350ea0 Call Trace: <TASK> inject_pending_event+0x2f7/0x4c0 [kvm] kvm_arch_vcpu_ioctl_run+0x791/0x17a0 [kvm] kvm_vcpu_ioctl+0x26d/0x650 [kvm] __x64_sys_ioctl+0x82/0xb0 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae </TASK>
CVE-2022-50230 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64: set UXN on swapper page tables [ This issue was fixed upstream by accident in c3cee924bd85 ("arm64: head: cover entire kernel image in initial ID map") as part of a large refactoring of the arm64 boot flow. This simple fix is therefore preferred for -stable backporting ] On a system that implements FEAT_EPAN, read/write access to the idmap is denied because UXN is not set on the swapper PTEs. As a result, idmap_kpti_install_ng_mappings panics the kernel when accessing __idmap_kpti_flag. Fix it by setting UXN on these PTEs.
CVE-2022-50232 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64: set UXN on swapper page tables [ This issue was fixed upstream by accident in c3cee924bd85 ("arm64: head: cover entire kernel image in initial ID map") as part of a large refactoring of the arm64 boot flow. This simple fix is therefore preferred for -stable backporting ] On a system that implements FEAT_EPAN, read/write access to the idmap is denied because UXN is not set on the swapper PTEs. As a result, idmap_kpti_install_ng_mappings panics the kernel when accessing __idmap_kpti_flag. Fix it by setting UXN on these PTEs.
CVE-2022-50193 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: erofs: wake up all waiters after z_erofs_lzma_head ready When the user mounts the erofs second times, the decompression thread may hung. The problem happens due to a sequence of steps like the following: 1) Task A called z_erofs_load_lzma_config which obtain all of the node from the z_erofs_lzma_head. 2) At this time, task B called the z_erofs_lzma_decompress and wanted to get a node. But the z_erofs_lzma_head was empty, the Task B had to sleep. 3) Task A release nodes and push nodes into the z_erofs_lzma_head. But task B was still sleeping. One example report when the hung happens: task:kworker/u3:1 state:D stack:14384 pid: 86 ppid: 2 flags:0x00004000 Workqueue: erofs_unzipd z_erofs_decompressqueue_work Call Trace: <TASK> __schedule+0x281/0x760 schedule+0x49/0xb0 z_erofs_lzma_decompress+0x4bc/0x580 ? cpu_core_flags+0x10/0x10 z_erofs_decompress_pcluster+0x49b/0xba0 ? __update_load_avg_se+0x2b0/0x330 ? __update_load_avg_se+0x2b0/0x330 ? update_load_avg+0x5f/0x690 ? update_load_avg+0x5f/0x690 ? set_next_entity+0xbd/0x110 ? _raw_spin_unlock+0xd/0x20 z_erofs_decompress_queue.isra.0+0x2e/0x50 z_erofs_decompressqueue_work+0x30/0x60 process_one_work+0x1d3/0x3a0 worker_thread+0x45/0x3a0 ? process_one_work+0x3a0/0x3a0 kthread+0xe2/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x22/0x30 </TASK>
CVE-2022-50195 1 Linux 1 Linux Kernel 2025-11-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: dts: qcom: replace gcc PXO with pxo_board fixed clock Replace gcc PXO phandle to pxo_board fixed clock declared in the dts. gcc driver doesn't provide PXO_SRC as it's a fixed-clock. This cause a kernel panic if any driver actually try to use it.
CVE-2025-38525 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix irq-disabled in local_bh_enable() The rxrpc_assess_MTU_size() function calls down into the IP layer to find out the MTU size for a route. When accepting an incoming call, this is called from rxrpc_new_incoming_call() which holds interrupts disabled across the code that calls down to it. Unfortunately, the IP layer uses local_bh_enable() which, config dependent, throws a warning if IRQs are enabled: WARNING: CPU: 1 PID: 5544 at kernel/softirq.c:387 __local_bh_enable_ip+0x43/0xd0 ... RIP: 0010:__local_bh_enable_ip+0x43/0xd0 ... Call Trace: <TASK> rt_cache_route+0x7e/0xa0 rt_set_nexthop.isra.0+0x3b3/0x3f0 __mkroute_output+0x43a/0x460 ip_route_output_key_hash+0xf7/0x140 ip_route_output_flow+0x1b/0x90 rxrpc_assess_MTU_size.isra.0+0x2a0/0x590 rxrpc_new_incoming_peer+0x46/0x120 rxrpc_alloc_incoming_call+0x1b1/0x400 rxrpc_new_incoming_call+0x1da/0x5e0 rxrpc_input_packet+0x827/0x900 rxrpc_io_thread+0x403/0xb60 kthread+0x2f7/0x310 ret_from_fork+0x2a/0x230 ret_from_fork_asm+0x1a/0x30 ... hardirqs last enabled at (23): _raw_spin_unlock_irq+0x24/0x50 hardirqs last disabled at (24): _raw_read_lock_irq+0x17/0x70 softirqs last enabled at (0): copy_process+0xc61/0x2730 softirqs last disabled at (25): rt_add_uncached_list+0x3c/0x90 Fix this by moving the call to rxrpc_assess_MTU_size() out of rxrpc_init_peer() and further up the stack where it can be done without interrupts disabled. It shouldn't be a problem for rxrpc_new_incoming_call() to do it after the locks are dropped as pmtud is going to be performed by the I/O thread - and we're in the I/O thread at this point.
CVE-2025-38518 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Disable INVLPGB on Zen2 AMD Cyan Skillfish (Family 17h, Model 47h, Stepping 0h) has an issue that causes system oopses and panics when performing TLB flush using INVLPGB. However, the problem is that that machine has misconfigured CPUID and should not report the INVLPGB bit in the first place. So zap the kernel's representation of the flag so that nothing gets confused. [ bp: Massage. ]
CVE-2025-38511 1 Linux 1 Linux Kernel 2025-11-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/pf: Clear all LMTT pages on alloc Our LMEM buffer objects are not cleared by default on alloc and during VF provisioning we only setup LMTT PTEs for the actually provisioned LMEM range. But beyond that valid range we might leave some stale data that could either point to some other VFs allocations or even to the PF pages. Explicitly clear all new LMTT page to avoid the risk that a malicious VF would try to exploit that gap. While around add asserts to catch any undesired PTE overwrites and low-level debug traces to track LMTT PT life-cycle. (cherry picked from commit 3fae6918a3e27cce20ded2551f863fb05d4bef8d)