| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix leaking sent_cmd skb
sent_cmd memory is not freed before freeing hci_dev causing it to leak
it contents. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: usbtmc: Fix bug in pipe direction for control transfers
The syzbot fuzzer reported a minor bug in the usbtmc driver:
usb 5-1: BOGUS control dir, pipe 80001e80 doesn't match bRequestType 0
WARNING: CPU: 0 PID: 3813 at drivers/usb/core/urb.c:412
usb_submit_urb+0x13a5/0x1970 drivers/usb/core/urb.c:410
Modules linked in:
CPU: 0 PID: 3813 Comm: syz-executor122 Not tainted
5.17.0-rc5-syzkaller-00306-g2293be58d6a1 #0
...
Call Trace:
<TASK>
usb_start_wait_urb+0x113/0x530 drivers/usb/core/message.c:58
usb_internal_control_msg drivers/usb/core/message.c:102 [inline]
usb_control_msg+0x2a5/0x4b0 drivers/usb/core/message.c:153
usbtmc_ioctl_request drivers/usb/class/usbtmc.c:1947 [inline]
The problem is that usbtmc_ioctl_request() uses usb_rcvctrlpipe() for
all of its transfers, whether they are in or out. It's easy to fix. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Fix NFSv3 SETATTR/CREATE's handling of large file sizes
iattr::ia_size is a loff_t, so these NFSv3 procedures must be
careful to deal with incoming client size values that are larger
than s64_max without corrupting the value.
Silently capping the value results in storing a different value
than the client passed in which is unexpected behavior, so remove
the min_t() check in decode_sattr3().
Note that RFC 1813 permits only the WRITE procedure to return
NFS3ERR_FBIG. We believe that NFSv3 reference implementations
also return NFS3ERR_FBIG when ia_size is too large. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Fix ia_size underflow
iattr::ia_size is a loff_t, which is a signed 64-bit type. NFSv3 and
NFSv4 both define file size as an unsigned 64-bit type. Thus there
is a range of valid file size values an NFS client can send that is
already larger than Linux can handle.
Currently decode_fattr4() dumps a full u64 value into ia_size. If
that value happens to be larger than S64_MAX, then ia_size
underflows. I'm about to fix up the NFSv3 behavior as well, so let's
catch the underflow in the common code path: nfsd_setattr(). |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Fix the behavior of READ near OFFSET_MAX
Dan Aloni reports:
> Due to commit 8cfb9015280d ("NFS: Always provide aligned buffers to
> the RPC read layers") on the client, a read of 0xfff is aligned up
> to server rsize of 0x1000.
>
> As a result, in a test where the server has a file of size
> 0x7fffffffffffffff, and the client tries to read from the offset
> 0x7ffffffffffff000, the read causes loff_t overflow in the server
> and it returns an NFS code of EINVAL to the client. The client as
> a result indefinitely retries the request.
The Linux NFS client does not handle NFS?ERR_INVAL, even though all
NFS specifications permit servers to return that status code for a
READ.
Instead of NFS?ERR_INVAL, have out-of-range READ requests succeed
and return a short result. Set the EOF flag in the result to prevent
the client from retrying the READ request. This behavior appears to
be consistent with Solaris NFS servers.
Note that NFSv3 and NFSv4 use u64 offset values on the wire. These
must be converted to loff_t internally before use -- an implicit
type cast is not adequate for this purpose. Otherwise VFS checks
against sb->s_maxbytes do not work properly. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vc4: Fix deadlock on DSI device attach error
DSI device attach to DSI host will be done with host device's lock
held.
Un-registering host in "device attach" error path (ex: probe retry)
will result in deadlock with below call trace and non operational
DSI display.
Startup Call trace:
[ 35.043036] rt_mutex_slowlock.constprop.21+0x184/0x1b8
[ 35.043048] mutex_lock_nested+0x7c/0xc8
[ 35.043060] device_del+0x4c/0x3e8
[ 35.043075] device_unregister+0x20/0x40
[ 35.043082] mipi_dsi_remove_device_fn+0x18/0x28
[ 35.043093] device_for_each_child+0x68/0xb0
[ 35.043105] mipi_dsi_host_unregister+0x40/0x90
[ 35.043115] vc4_dsi_host_attach+0xf0/0x120 [vc4]
[ 35.043199] mipi_dsi_attach+0x30/0x48
[ 35.043209] tc358762_probe+0x128/0x164 [tc358762]
[ 35.043225] mipi_dsi_drv_probe+0x28/0x38
[ 35.043234] really_probe+0xc0/0x318
[ 35.043244] __driver_probe_device+0x80/0xe8
[ 35.043254] driver_probe_device+0xb8/0x118
[ 35.043263] __device_attach_driver+0x98/0xe8
[ 35.043273] bus_for_each_drv+0x84/0xd8
[ 35.043281] __device_attach+0xf0/0x150
[ 35.043290] device_initial_probe+0x1c/0x28
[ 35.043300] bus_probe_device+0xa4/0xb0
[ 35.043308] deferred_probe_work_func+0xa0/0xe0
[ 35.043318] process_one_work+0x254/0x700
[ 35.043330] worker_thread+0x4c/0x448
[ 35.043339] kthread+0x19c/0x1a8
[ 35.043348] ret_from_fork+0x10/0x20
Shutdown Call trace:
[ 365.565417] Call trace:
[ 365.565423] __switch_to+0x148/0x200
[ 365.565452] __schedule+0x340/0x9c8
[ 365.565467] schedule+0x48/0x110
[ 365.565479] schedule_timeout+0x3b0/0x448
[ 365.565496] wait_for_completion+0xac/0x138
[ 365.565509] __flush_work+0x218/0x4e0
[ 365.565523] flush_work+0x1c/0x28
[ 365.565536] wait_for_device_probe+0x68/0x158
[ 365.565550] device_shutdown+0x24/0x348
[ 365.565561] kernel_restart_prepare+0x40/0x50
[ 365.565578] kernel_restart+0x20/0x70
[ 365.565591] __do_sys_reboot+0x10c/0x220
[ 365.565605] __arm64_sys_reboot+0x2c/0x38
[ 365.565619] invoke_syscall+0x4c/0x110
[ 365.565634] el0_svc_common.constprop.3+0xfc/0x120
[ 365.565648] do_el0_svc+0x2c/0x90
[ 365.565661] el0_svc+0x4c/0xf0
[ 365.565671] el0t_64_sync_handler+0x90/0xb8
[ 365.565682] el0t_64_sync+0x180/0x184 |
| In the Linux kernel, the following vulnerability has been resolved:
vt_ioctl: fix array_index_nospec in vt_setactivate
array_index_nospec ensures that an out-of-bounds value is set to zero
on the transient path. Decreasing the value by one afterwards causes
a transient integer underflow. vsa.console should be decreased first
and then sanitized with array_index_nospec.
Kasper Acknowledgements: Jakob Koschel, Brian Johannesmeyer, Kaveh
Razavi, Herbert Bos, Cristiano Giuffrida from the VUSec group at VU
Amsterdam. |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Fix data TLB miss in sba_unmap_sg
Rolf Eike Beer reported the following bug:
[1274934.746891] Bad Address (null pointer deref?): Code=15 (Data TLB miss fault) at addr 0000004140000018
[1274934.746891] CPU: 3 PID: 5549 Comm: cmake Not tainted 5.15.4-gentoo-parisc64 #4
[1274934.746891] Hardware name: 9000/785/C8000
[1274934.746891]
[1274934.746891] YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI
[1274934.746891] PSW: 00001000000001001111111000001110 Not tainted
[1274934.746891] r00-03 000000ff0804fe0e 0000000040bc9bc0 00000000406760e4 0000004140000000
[1274934.746891] r04-07 0000000040b693c0 0000004140000000 000000004a2b08b0 0000000000000001
[1274934.746891] r08-11 0000000041f98810 0000000000000000 000000004a0a7000 0000000000000001
[1274934.746891] r12-15 0000000040bddbc0 0000000040c0cbc0 0000000040bddbc0 0000000040bddbc0
[1274934.746891] r16-19 0000000040bde3c0 0000000040bddbc0 0000000040bde3c0 0000000000000007
[1274934.746891] r20-23 0000000000000006 000000004a368950 0000000000000000 0000000000000001
[1274934.746891] r24-27 0000000000001fff 000000000800000e 000000004a1710f0 0000000040b693c0
[1274934.746891] r28-31 0000000000000001 0000000041f988b0 0000000041f98840 000000004a171118
[1274934.746891] sr00-03 00000000066e5800 0000000000000000 0000000000000000 00000000066e5800
[1274934.746891] sr04-07 0000000000000000 0000000000000000 0000000000000000 0000000000000000
[1274934.746891]
[1274934.746891] IASQ: 0000000000000000 0000000000000000 IAOQ: 00000000406760e8 00000000406760ec
[1274934.746891] IIR: 48780030 ISR: 0000000000000000 IOR: 0000004140000018
[1274934.746891] CPU: 3 CR30: 00000040e3a9c000 CR31: ffffffffffffffff
[1274934.746891] ORIG_R28: 0000000040acdd58
[1274934.746891] IAOQ[0]: sba_unmap_sg+0xb0/0x118
[1274934.746891] IAOQ[1]: sba_unmap_sg+0xb4/0x118
[1274934.746891] RP(r2): sba_unmap_sg+0xac/0x118
[1274934.746891] Backtrace:
[1274934.746891] [<00000000402740cc>] dma_unmap_sg_attrs+0x6c/0x70
[1274934.746891] [<000000004074d6bc>] scsi_dma_unmap+0x54/0x60
[1274934.746891] [<00000000407a3488>] mptscsih_io_done+0x150/0xd70
[1274934.746891] [<0000000040798600>] mpt_interrupt+0x168/0xa68
[1274934.746891] [<0000000040255a48>] __handle_irq_event_percpu+0xc8/0x278
[1274934.746891] [<0000000040255c34>] handle_irq_event_percpu+0x3c/0xd8
[1274934.746891] [<000000004025ecb4>] handle_percpu_irq+0xb4/0xf0
[1274934.746891] [<00000000402548e0>] generic_handle_irq+0x50/0x70
[1274934.746891] [<000000004019a254>] call_on_stack+0x18/0x24
[1274934.746891]
[1274934.746891] Kernel panic - not syncing: Bad Address (null pointer deref?)
The bug is caused by overrunning the sglist and incorrectly testing
sg_dma_len(sglist) before nents. Normally this doesn't cause a crash,
but in this case sglist crossed a page boundary. This occurs in the
following code:
while (sg_dma_len(sglist) && nents--) {
The fix is simply to test nents first and move the decrement of nents
into the loop. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ieee802154: at86rf230: Stop leaking skb's
Upon error the ieee802154_xmit_complete() helper is not called. Only
ieee802154_wake_queue() is called manually. In the Tx case we then leak
the skb structure.
Free the skb structure upon error before returning when appropriate.
As the 'is_tx = 0' cannot be moved in the complete handler because of a
possible race between the delay in switching to STATE_RX_AACK_ON and a
new interrupt, we introduce an intermediate 'was_tx' boolean just for
this purpose.
There is no Fixes tag applying here, many changes have been made on this
area and the issue kind of always existed. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix use-after-free for aborted SSP/STP sas_task
Currently a use-after-free may occur if a sas_task is aborted by the upper
layer before we handle the I/O completion in mpi_ssp_completion() or
mpi_sata_completion().
In this case, the following are the two steps in handling those I/O
completions:
- Call complete() to inform the upper layer handler of completion of
the I/O.
- Release driver resources associated with the sas_task in
pm8001_ccb_task_free() call.
When complete() is called, the upper layer may free the sas_task. As such,
we should not touch the associated sas_task afterwards, but we do so in the
pm8001_ccb_task_free() call.
Fix by swapping the complete() and pm8001_ccb_task_free() calls ordering. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix use-after-free for aborted TMF sas_task
Currently a use-after-free may occur if a TMF sas_task is aborted before we
handle the IO completion in mpi_ssp_completion(). The abort occurs due to
timeout.
When the timeout occurs, the SAS_TASK_STATE_ABORTED flag is set and the
sas_task is freed in pm8001_exec_internal_tmf_task().
However, if the I/O completion occurs later, the I/O completion still
thinks that the sas_task is available. Fix this by clearing the ccb->task
if the TMF times out - the I/O completion handler does nothing if this
pointer is cleared. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: fix a possible use-after-free in controller reset during load
Unlike .queue_rq, in .submit_async_event drivers may not check the ctrl
readiness for AER submission. This may lead to a use-after-free
condition that was observed with nvme-tcp.
The race condition may happen in the following scenario:
1. driver executes its reset_ctrl_work
2. -> nvme_stop_ctrl - flushes ctrl async_event_work
3. ctrl sends AEN which is received by the host, which in turn
schedules AEN handling
4. teardown admin queue (which releases the queue socket)
5. AEN processed, submits another AER, calling the driver to submit
6. driver attempts to send the cmd
==> use-after-free
In order to fix that, add ctrl state check to validate the ctrl
is actually able to accept the AER submission.
This addresses the above race in controller resets because the driver
during teardown should:
1. change ctrl state to RESETTING
2. flush async_event_work (as well as other async work elements)
So after 1,2, any other AER command will find the
ctrl state to be RESETTING and bail out without submitting the AER. |
| In the Linux kernel, the following vulnerability has been resolved:
media: lgdt3306a: Add a check against null-pointer-def
The driver should check whether the client provides the platform_data.
The following log reveals it:
[ 29.610324] BUG: KASAN: null-ptr-deref in kmemdup+0x30/0x40
[ 29.610730] Read of size 40 at addr 0000000000000000 by task bash/414
[ 29.612820] Call Trace:
[ 29.613030] <TASK>
[ 29.613201] dump_stack_lvl+0x56/0x6f
[ 29.613496] ? kmemdup+0x30/0x40
[ 29.613754] print_report.cold+0x494/0x6b7
[ 29.614082] ? kmemdup+0x30/0x40
[ 29.614340] kasan_report+0x8a/0x190
[ 29.614628] ? kmemdup+0x30/0x40
[ 29.614888] kasan_check_range+0x14d/0x1d0
[ 29.615213] memcpy+0x20/0x60
[ 29.615454] kmemdup+0x30/0x40
[ 29.615700] lgdt3306a_probe+0x52/0x310
[ 29.616339] i2c_device_probe+0x951/0xa90 |
| In the Linux kernel, the following vulnerability has been resolved:
efi: runtime: avoid EFIv2 runtime services on Apple x86 machines
Aditya reports [0] that his recent MacbookPro crashes in the firmware
when using the variable services at runtime. The culprit appears to be a
call to QueryVariableInfo(), which we did not use to call on Apple x86
machines in the past as they only upgraded from EFI v1.10 to EFI v2.40
firmware fairly recently, and QueryVariableInfo() (along with
UpdateCapsule() et al) was added in EFI v2.00.
The only runtime service introduced in EFI v2.00 that we actually use in
Linux is QueryVariableInfo(), as the capsule based ones are optional,
generally not used at runtime (all the LVFS/fwupd firmware update
infrastructure uses helper EFI programs that invoke capsule update at
boot time, not runtime), and not implemented by Apple machines in the
first place. QueryVariableInfo() is used to 'safely' set variables,
i.e., only when there is enough space. This prevents machines with buggy
firmwares from corrupting their NVRAMs when they run out of space.
Given that Apple machines have been using EFI v1.10 services only for
the longest time (the EFI v2.0 spec was released in 2006, and Linux
support for the newly introduced runtime services was added in 2011, but
the MacbookPro12,1 released in 2015 still claims to be EFI v1.10 only),
let's avoid the EFI v2.0 ones on all Apple x86 machines.
[0] https://lore.kernel.org/all/6D757C75-65B1-468B-842D-10410081A8E4@live.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: LAPIC: Also cancel preemption timer during SET_LAPIC
The below warning is splatting during guest reboot.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1931 at arch/x86/kvm/x86.c:10322 kvm_arch_vcpu_ioctl_run+0x874/0x880 [kvm]
CPU: 0 PID: 1931 Comm: qemu-system-x86 Tainted: G I 5.17.0-rc1+ #5
RIP: 0010:kvm_arch_vcpu_ioctl_run+0x874/0x880 [kvm]
Call Trace:
<TASK>
kvm_vcpu_ioctl+0x279/0x710 [kvm]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fd39797350b
This can be triggered by not exposing tsc-deadline mode and doing a reboot in
the guest. The lapic_shutdown() function which is called in sys_reboot path
will not disarm the flying timer, it just masks LVTT. lapic_shutdown() clears
APIC state w/ LVT_MASKED and timer-mode bit is 0, this can trigger timer-mode
switch between tsc-deadline and oneshot/periodic, which can result in preemption
timer be cancelled in apic_update_lvtt(). However, We can't depend on this when
not exposing tsc-deadline mode and oneshot/periodic modes emulated by preemption
timer. Qemu will synchronise states around reset, let's cancel preemption timer
under KVM_SET_LAPIC. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Forcibly leave nested virt when SMM state is toggled
Forcibly leave nested virtualization operation if userspace toggles SMM
state via KVM_SET_VCPU_EVENTS or KVM_SYNC_X86_EVENTS. If userspace
forces the vCPU out of SMM while it's post-VMXON and then injects an SMI,
vmx_enter_smm() will overwrite vmx->nested.smm.vmxon and end up with both
vmxon=false and smm.vmxon=false, but all other nVMX state allocated.
Don't attempt to gracefully handle the transition as (a) most transitions
are nonsencial, e.g. forcing SMM while L2 is running, (b) there isn't
sufficient information to handle all transitions, e.g. SVM wants access
to the SMRAM save state, and (c) KVM_SET_VCPU_EVENTS must precede
KVM_SET_NESTED_STATE during state restore as the latter disallows putting
the vCPU into L2 if SMM is active, and disallows tagging the vCPU as
being post-VMXON in SMM if SMM is not active.
Abuse of KVM_SET_VCPU_EVENTS manifests as a WARN and memory leak in nVMX
due to failure to free vmcs01's shadow VMCS, but the bug goes far beyond
just a memory leak, e.g. toggling SMM on while L2 is active puts the vCPU
in an architecturally impossible state.
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Modules linked in:
CPU: 1 PID: 3606 Comm: syz-executor725 Not tainted 5.17.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
RIP: 0010:free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Code: <0f> 0b eb b3 e8 8f 4d 9f 00 e9 f7 fe ff ff 48 89 df e8 92 4d 9f 00
Call Trace:
<TASK>
kvm_arch_vcpu_destroy+0x72/0x2f0 arch/x86/kvm/x86.c:11123
kvm_vcpu_destroy arch/x86/kvm/../../../virt/kvm/kvm_main.c:441 [inline]
kvm_destroy_vcpus+0x11f/0x290 arch/x86/kvm/../../../virt/kvm/kvm_main.c:460
kvm_free_vcpus arch/x86/kvm/x86.c:11564 [inline]
kvm_arch_destroy_vm+0x2e8/0x470 arch/x86/kvm/x86.c:11676
kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1217 [inline]
kvm_put_kvm+0x4fa/0xb00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1250
kvm_vm_release+0x3f/0x50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1273
__fput+0x286/0x9f0 fs/file_table.c:311
task_work_run+0xdd/0x1a0 kernel/task_work.c:164
exit_task_work include/linux/task_work.h:32 [inline]
do_exit+0xb29/0x2a30 kernel/exit.c:806
do_group_exit+0xd2/0x2f0 kernel/exit.c:935
get_signal+0x4b0/0x28c0 kernel/signal.c:2862
arch_do_signal_or_restart+0x2a9/0x1c40 arch/x86/kernel/signal.c:868
handle_signal_work kernel/entry/common.c:148 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x17d/0x290 kernel/entry/common.c:207
__syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:300
do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
usb: xhci-plat: fix crash when suspend if remote wake enable
Crashed at i.mx8qm platform when suspend if enable remote wakeup
Internal error: synchronous external abort: 96000210 [#1] PREEMPT SMP
Modules linked in:
CPU: 2 PID: 244 Comm: kworker/u12:6 Not tainted 5.15.5-dirty #12
Hardware name: Freescale i.MX8QM MEK (DT)
Workqueue: events_unbound async_run_entry_fn
pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : xhci_disable_hub_port_wake.isra.62+0x60/0xf8
lr : xhci_disable_hub_port_wake.isra.62+0x34/0xf8
sp : ffff80001394bbf0
x29: ffff80001394bbf0 x28: 0000000000000000 x27: ffff00081193b578
x26: ffff00081193b570 x25: 0000000000000000 x24: 0000000000000000
x23: ffff00081193a29c x22: 0000000000020001 x21: 0000000000000001
x20: 0000000000000000 x19: ffff800014e90490 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000002 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000960 x9 : ffff80001394baa0
x8 : ffff0008145d1780 x7 : ffff0008f95b8e80 x6 : 000000001853b453
x5 : 0000000000000496 x4 : 0000000000000000 x3 : ffff00081193a29c
x2 : 0000000000000001 x1 : 0000000000000000 x0 : ffff000814591620
Call trace:
xhci_disable_hub_port_wake.isra.62+0x60/0xf8
xhci_suspend+0x58/0x510
xhci_plat_suspend+0x50/0x78
platform_pm_suspend+0x2c/0x78
dpm_run_callback.isra.25+0x50/0xe8
__device_suspend+0x108/0x3c0
The basic flow:
1. run time suspend call xhci_suspend, xhci parent devices gate the clock.
2. echo mem >/sys/power/state, system _device_suspend call xhci_suspend
3. xhci_suspend call xhci_disable_hub_port_wake, which access register,
but clock already gated by run time suspend.
This problem was hidden by power domain driver, which call run time resume before it.
But the below commit remove it and make this issue happen.
commit c1df456d0f06e ("PM: domains: Don't runtime resume devices at genpd_prepare()")
This patch call run time resume before suspend to make sure clock is on
before access register.
Testeb-by: Abel Vesa <abel.vesa@nxp.com> |
| In the Linux kernel, the following vulnerability has been resolved:
USB: core: Fix hang in usb_kill_urb by adding memory barriers
The syzbot fuzzer has identified a bug in which processes hang waiting
for usb_kill_urb() to return. It turns out the issue is not unlinking
the URB; that works just fine. Rather, the problem arises when the
wakeup notification that the URB has completed is not received.
The reason is memory-access ordering on SMP systems. In outline form,
usb_kill_urb() and __usb_hcd_giveback_urb() operating concurrently on
different CPUs perform the following actions:
CPU 0 CPU 1
---------------------------- ---------------------------------
usb_kill_urb(): __usb_hcd_giveback_urb():
... ...
atomic_inc(&urb->reject); atomic_dec(&urb->use_count);
... ...
wait_event(usb_kill_urb_queue,
atomic_read(&urb->use_count) == 0);
if (atomic_read(&urb->reject))
wake_up(&usb_kill_urb_queue);
Confining your attention to urb->reject and urb->use_count, you can
see that the overall pattern of accesses on CPU 0 is:
write urb->reject, then read urb->use_count;
whereas the overall pattern of accesses on CPU 1 is:
write urb->use_count, then read urb->reject.
This pattern is referred to in memory-model circles as SB (for "Store
Buffering"), and it is well known that without suitable enforcement of
the desired order of accesses -- in the form of memory barriers -- it
is entirely possible for one or both CPUs to execute their reads ahead
of their writes. The end result will be that sometimes CPU 0 sees the
old un-decremented value of urb->use_count while CPU 1 sees the old
un-incremented value of urb->reject. Consequently CPU 0 ends up on
the wait queue and never gets woken up, leading to the observed hang
in usb_kill_urb().
The same pattern of accesses occurs in usb_poison_urb() and the
failure pathway of usb_hcd_submit_urb().
The problem is fixed by adding suitable memory barriers. To provide
proper memory-access ordering in the SB pattern, a full barrier is
required on both CPUs. The atomic_inc() and atomic_dec() accesses
themselves don't provide any memory ordering, but since they are
present, we can use the optimized smp_mb__after_atomic() memory
barrier in the various routines to obtain the desired effect.
This patch adds the necessary memory barriers. |
| In the Linux kernel, the following vulnerability has been resolved:
selinux: fix double free of cond_list on error paths
On error path from cond_read_list() and duplicate_policydb_cond_list()
the cond_list_destroy() gets called a second time in caller functions,
resulting in NULL pointer deref. Fix this by resetting the
cond_list_len to 0 in cond_list_destroy(), making subsequent calls a
noop.
Also consistently reset the cond_list pointer to NULL after freeing.
[PM: fix line lengths in the description] |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: ops: Reject out of bounds values in snd_soc_put_volsw()
We don't currently validate that the values being set are within the range
we advertised to userspace as being valid, do so and reject any values
that are out of range. |