| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtl818x: Fix potential memory leaks in rtl8180_init_rx_ring()
In rtl8180_init_rx_ring(), memory is allocated for skb packets and DMA
allocations in a loop. When an allocation fails, the previously
successful allocations are not freed on exit.
Fix that by jumping to err_free_rings label on error, which calls
rtl8180_free_rx_ring() to free the allocations. Remove the free of
rx_ring in rtl8180_init_rx_ring() error path, and set the freed
priv->rx_buf entry to null, to avoid double free. |
| In the Linux kernel, the following vulnerability has been resolved:
backlight: led-bl: Add devlink to supplier LEDs
LED Backlight is a consumer of one or multiple LED class devices, but
devlink is currently unable to create correct supplier-producer links when
the supplier is a class device. It creates instead a link where the
supplier is the parent of the expected device.
One consequence is that removal order is not correctly enforced.
Issues happen for example with the following sections in a device tree
overlay:
// An LED driver chip
pca9632@62 {
compatible = "nxp,pca9632";
reg = <0x62>;
// ...
addon_led_pwm: led-pwm@3 {
reg = <3>;
label = "addon:led:pwm";
};
};
backlight-addon {
compatible = "led-backlight";
leds = <&addon_led_pwm>;
brightness-levels = <255>;
default-brightness-level = <255>;
};
In this example, the devlink should be created between the backlight-addon
(consumer) and the pca9632@62 (supplier). Instead it is created between the
backlight-addon (consumer) and the parent of the pca9632@62, which is
typically the I2C bus adapter.
On removal of the above overlay, the LED driver can be removed before the
backlight device, resulting in:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
...
Call trace:
led_put+0xe0/0x140
devm_led_release+0x6c/0x98
Another way to reproduce the bug without any device tree overlays is
unbinding the LED class device (pca9632@62) before unbinding the consumer
(backlight-addon):
echo 11-0062 >/sys/bus/i2c/drivers/leds-pca963x/unbind
echo ...backlight-dock >/sys/bus/platform/drivers/led-backlight/unbind
Fix by adding a devlink between the consuming led-backlight device and the
supplying LED device, as other drivers and subsystems do as well. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vgem-fence: Fix potential deadlock on release
A timer that expires a vgem fence automatically in 10 seconds is now
released with timer_delete_sync() from fence->ops.release() called on last
dma_fence_put(). In some scenarios, it can run in IRQ context, which is
not safe unless TIMER_IRQSAFE is used. One potentially risky scenario was
demonstrated in Intel DRM CI trybot, BAT run on machine bat-adlp-6, while
working on new IGT subtests syncobj_timeline@stress-* as user space
replacements of some problematic test cases of a dma-fence-chain selftest
[1].
[117.004338] ================================
[117.004340] WARNING: inconsistent lock state
[117.004342] 6.17.0-rc7-CI_DRM_17270-g7644974e648c+ #1 Tainted: G S U
[117.004346] --------------------------------
[117.004347] inconsistent {HARDIRQ-ON-W} -> {IN-HARDIRQ-W} usage.
[117.004349] swapper/0/0 [HC1[1]:SC1[1]:HE0:SE0] takes:
[117.004352] ffff888138f86aa8 ((&fence->timer)){?.-.}-{0:0}, at: __timer_delete_sync+0x4b/0x190
[117.004361] {HARDIRQ-ON-W} state was registered at:
[117.004363] lock_acquire+0xc4/0x2e0
[117.004366] call_timer_fn+0x80/0x2a0
[117.004368] __run_timers+0x231/0x310
[117.004370] run_timer_softirq+0x76/0xe0
[117.004372] handle_softirqs+0xd4/0x4d0
[117.004375] __irq_exit_rcu+0x13f/0x160
[117.004377] irq_exit_rcu+0xe/0x20
[117.004379] sysvec_apic_timer_interrupt+0xa0/0xc0
[117.004382] asm_sysvec_apic_timer_interrupt+0x1b/0x20
[117.004385] cpuidle_enter_state+0x12b/0x8a0
[117.004388] cpuidle_enter+0x2e/0x50
[117.004393] call_cpuidle+0x22/0x60
[117.004395] do_idle+0x1fd/0x260
[117.004398] cpu_startup_entry+0x29/0x30
[117.004401] start_secondary+0x12d/0x160
[117.004404] common_startup_64+0x13e/0x141
[117.004407] irq event stamp: 2282669
[117.004409] hardirqs last enabled at (2282668): [<ffffffff8289db71>] _raw_spin_unlock_irqrestore+0x51/0x80
[117.004414] hardirqs last disabled at (2282669): [<ffffffff82882021>] sysvec_irq_work+0x11/0xc0
[117.004419] softirqs last enabled at (2254702): [<ffffffff8289fd00>] __do_softirq+0x10/0x18
[117.004423] softirqs last disabled at (2254725): [<ffffffff813d4ddf>] __irq_exit_rcu+0x13f/0x160
[117.004426]
other info that might help us debug this:
[117.004429] Possible unsafe locking scenario:
[117.004432] CPU0
[117.004433] ----
[117.004434] lock((&fence->timer));
[117.004436] <Interrupt>
[117.004438] lock((&fence->timer));
[117.004440]
*** DEADLOCK ***
[117.004443] 1 lock held by swapper/0/0:
[117.004445] #0: ffffc90000003d50 ((&fence->timer)){?.-.}-{0:0}, at: call_timer_fn+0x7a/0x2a0
[117.004450]
stack backtrace:
[117.004453] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Tainted: G S U 6.17.0-rc7-CI_DRM_17270-g7644974e648c+ #1 PREEMPT(voluntary)
[117.004455] Tainted: [S]=CPU_OUT_OF_SPEC, [U]=USER
[117.004455] Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR4 RVP, BIOS RPLPFWI1.R00.4035.A00.2301200723 01/20/2023
[117.004456] Call Trace:
[117.004456] <IRQ>
[117.004457] dump_stack_lvl+0x91/0xf0
[117.004460] dump_stack+0x10/0x20
[117.004461] print_usage_bug.part.0+0x260/0x360
[117.004463] mark_lock+0x76e/0x9c0
[117.004465] ? register_lock_class+0x48/0x4a0
[117.004467] __lock_acquire+0xbc3/0x2860
[117.004469] lock_acquire+0xc4/0x2e0
[117.004470] ? __timer_delete_sync+0x4b/0x190
[117.004472] ? __timer_delete_sync+0x4b/0x190
[117.004473] __timer_delete_sync+0x68/0x190
[117.004474] ? __timer_delete_sync+0x4b/0x190
[117.004475] timer_delete_sync+0x10/0x20
[117.004476] vgem_fence_release+0x19/0x30 [vgem]
[117.004478] dma_fence_release+0xc1/0x3b0
[117.004480] ? dma_fence_release+0xa1/0x3b0
[117.004481] dma_fence_chain_release+0xe7/0x130
[117.004483] dma_fence_release+0xc1/0x3b0
[117.004484] ? _raw_spin_unlock_irqrestore+0x27/0x80
[117.004485] dma_fence_chain_irq_work+0x59/0x80
[117.004487] irq_work_single+0x75/0xa0
[117.004490] irq_work_r
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
block: Use RCU in blk_mq_[un]quiesce_tagset() instead of set->tag_list_lock
blk_mq_{add,del}_queue_tag_set() functions add and remove queues from
tagset, the functions make sure that tagset and queues are marked as
shared when two or more queues are attached to the same tagset.
Initially a tagset starts as unshared and when the number of added
queues reaches two, blk_mq_add_queue_tag_set() marks it as shared along
with all the queues attached to it. When the number of attached queues
drops to 1 blk_mq_del_queue_tag_set() need to mark both the tagset and
the remaining queues as unshared.
Both functions need to freeze current queues in tagset before setting on
unsetting BLK_MQ_F_TAG_QUEUE_SHARED flag. While doing so, both functions
hold set->tag_list_lock mutex, which makes sense as we do not want
queues to be added or deleted in the process. This used to work fine
until commit 98d81f0df70c ("nvme: use blk_mq_[un]quiesce_tagset")
made the nvme driver quiesce tagset instead of quiscing individual
queues. blk_mq_quiesce_tagset() does the job and quiesce the queues in
set->tag_list while holding set->tag_list_lock also.
This results in deadlock between two threads with these stacktraces:
__schedule+0x47c/0xbb0
? timerqueue_add+0x66/0xb0
schedule+0x1c/0xa0
schedule_preempt_disabled+0xa/0x10
__mutex_lock.constprop.0+0x271/0x600
blk_mq_quiesce_tagset+0x25/0xc0
nvme_dev_disable+0x9c/0x250
nvme_timeout+0x1fc/0x520
blk_mq_handle_expired+0x5c/0x90
bt_iter+0x7e/0x90
blk_mq_queue_tag_busy_iter+0x27e/0x550
? __blk_mq_complete_request_remote+0x10/0x10
? __blk_mq_complete_request_remote+0x10/0x10
? __call_rcu_common.constprop.0+0x1c0/0x210
blk_mq_timeout_work+0x12d/0x170
process_one_work+0x12e/0x2d0
worker_thread+0x288/0x3a0
? rescuer_thread+0x480/0x480
kthread+0xb8/0xe0
? kthread_park+0x80/0x80
ret_from_fork+0x2d/0x50
? kthread_park+0x80/0x80
ret_from_fork_asm+0x11/0x20
__schedule+0x47c/0xbb0
? xas_find+0x161/0x1a0
schedule+0x1c/0xa0
blk_mq_freeze_queue_wait+0x3d/0x70
? destroy_sched_domains_rcu+0x30/0x30
blk_mq_update_tag_set_shared+0x44/0x80
blk_mq_exit_queue+0x141/0x150
del_gendisk+0x25a/0x2d0
nvme_ns_remove+0xc9/0x170
nvme_remove_namespaces+0xc7/0x100
nvme_remove+0x62/0x150
pci_device_remove+0x23/0x60
device_release_driver_internal+0x159/0x200
unbind_store+0x99/0xa0
kernfs_fop_write_iter+0x112/0x1e0
vfs_write+0x2b1/0x3d0
ksys_write+0x4e/0xb0
do_syscall_64+0x5b/0x160
entry_SYSCALL_64_after_hwframe+0x4b/0x53
The top stacktrace is showing nvme_timeout() called to handle nvme
command timeout. timeout handler is trying to disable the controller and
as a first step, it needs to blk_mq_quiesce_tagset() to tell blk-mq not
to call queue callback handlers. The thread is stuck waiting for
set->tag_list_lock as it tries to walk the queues in set->tag_list.
The lock is held by the second thread in the bottom stack which is
waiting for one of queues to be frozen. The queue usage counter will
drop to zero after nvme_timeout() finishes, and this will not happen
because the thread will wait for this mutex forever.
Given that [un]quiescing queue is an operation that does not need to
sleep, update blk_mq_[un]quiesce_tagset() to use RCU instead of taking
set->tag_list_lock, update blk_mq_{add,del}_queue_tag_set() to use RCU
safe list operations. Also, delete INIT_LIST_HEAD(&q->tag_set_list)
in blk_mq_del_queue_tag_set() because we can not re-initialize it while
the list is being traversed under RCU. The deleted queue will not be
added/deleted to/from a tagset and it will be freed in blk_free_queue()
after the end of RCU grace period. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: most: remove broken i2c driver
The MOST I2C driver has been completely broken for five years without
anyone noticing so remove the driver from staging.
Specifically, commit 723de0f9171e ("staging: most: remove device from
interface structure") started requiring drivers to set the interface
device pointer before registration, but the I2C driver was never updated
which results in a NULL pointer dereference if anyone ever tries to
probe it. |
| In the Linux kernel, the following vulnerability has been resolved:
rtc: amlogic-a4: fix double free caused by devm
The clock obtained via devm_clk_get_enabled() is automatically managed
by devres and will be disabled and freed on driver detach. Manually
calling clk_disable_unprepare() in error path and remove function
causes double free.
Remove the redundant clk_disable_unprepare() calls from the probe
error path and aml_rtc_remove(), allowing the devm framework to
automatically manage the clock lifecycle. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: firewire-motu: add bounds check in put_user loop for DSP events
In the DSP event handling code, a put_user() loop copies event data.
When the user buffer size is not aligned to 4 bytes, it could overwrite
beyond the buffer boundary.
Fix by adding a bounds check before put_user(). |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: Implement settime64 with -EOPNOTSUPP
ptp_clock_settime() assumes every ptp_clock has implemented settime64().
Stub it with -EOPNOTSUPP to prevent a NULL dereference.
The fix is similar to commit 329d050bbe63 ("gve: Implement settime64
with -EOPNOTSUPP"). |
| In the Linux kernel, the following vulnerability has been resolved:
s390/fpu: Fix false-positive kmsan report in fpu_vstl()
A false-positive kmsan report is detected when running ping command.
An inline assembly instruction 'vstl' can write varied amount of bytes
depending on value of 'index' argument. If 'index' > 0, 'vstl' writes
at least 2 bytes.
clang generates kmsan write helper call depending on inline assembly
constraints. Constraints are evaluated compile-time, but value of
'index' argument is known only at runtime.
clang currently generates call to __msan_instrument_asm_store with 1 byte
as size. Manually call kmsan function to indicate correct amount of bytes
written and fix false-positive report.
This change fixes following kmsan reports:
[ 36.563119] =====================================================
[ 36.563594] BUG: KMSAN: uninit-value in virtqueue_add+0x35c6/0x7c70
[ 36.563852] virtqueue_add+0x35c6/0x7c70
[ 36.564016] virtqueue_add_outbuf+0xa0/0xb0
[ 36.564266] start_xmit+0x288c/0x4a20
[ 36.564460] dev_hard_start_xmit+0x302/0x900
[ 36.564649] sch_direct_xmit+0x340/0xea0
[ 36.564894] __dev_queue_xmit+0x2e94/0x59b0
[ 36.565058] neigh_resolve_output+0x936/0xb40
[ 36.565278] __neigh_update+0x2f66/0x3a60
[ 36.565499] neigh_update+0x52/0x60
[ 36.565683] arp_process+0x1588/0x2de0
[ 36.565916] NF_HOOK+0x1da/0x240
[ 36.566087] arp_rcv+0x3e4/0x6e0
[ 36.566306] __netif_receive_skb_list_core+0x1374/0x15a0
[ 36.566527] netif_receive_skb_list_internal+0x1116/0x17d0
[ 36.566710] napi_complete_done+0x376/0x740
[ 36.566918] virtnet_poll+0x1bae/0x2910
[ 36.567130] __napi_poll+0xf4/0x830
[ 36.567294] net_rx_action+0x97c/0x1ed0
[ 36.567556] handle_softirqs+0x306/0xe10
[ 36.567731] irq_exit_rcu+0x14c/0x2e0
[ 36.567910] do_io_irq+0xd4/0x120
[ 36.568139] io_int_handler+0xc2/0xe8
[ 36.568299] arch_cpu_idle+0xb0/0xc0
[ 36.568540] arch_cpu_idle+0x76/0xc0
[ 36.568726] default_idle_call+0x40/0x70
[ 36.568953] do_idle+0x1d6/0x390
[ 36.569486] cpu_startup_entry+0x9a/0xb0
[ 36.569745] rest_init+0x1ea/0x290
[ 36.570029] start_kernel+0x95e/0xb90
[ 36.570348] startup_continue+0x2e/0x40
[ 36.570703]
[ 36.570798] Uninit was created at:
[ 36.571002] kmem_cache_alloc_node_noprof+0x9e8/0x10e0
[ 36.571261] kmalloc_reserve+0x12a/0x470
[ 36.571553] __alloc_skb+0x310/0x860
[ 36.571844] __ip_append_data+0x483e/0x6a30
[ 36.572170] ip_append_data+0x11c/0x1e0
[ 36.572477] raw_sendmsg+0x1c8c/0x2180
[ 36.572818] inet_sendmsg+0xe6/0x190
[ 36.573142] __sys_sendto+0x55e/0x8e0
[ 36.573392] __s390x_sys_socketcall+0x19ae/0x2ba0
[ 36.573571] __do_syscall+0x12e/0x240
[ 36.573823] system_call+0x6e/0x90
[ 36.573976]
[ 36.574017] Byte 35 of 98 is uninitialized
[ 36.574082] Memory access of size 98 starts at 0000000007aa0012
[ 36.574218]
[ 36.574325] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Tainted: G B N 6.17.0-dirty #16 NONE
[ 36.574541] Tainted: [B]=BAD_PAGE, [N]=TEST
[ 36.574617] Hardware name: IBM 3931 A01 703 (KVM/Linux)
[ 36.574755] =====================================================
[ 63.532541] =====================================================
[ 63.533639] BUG: KMSAN: uninit-value in virtqueue_add+0x35c6/0x7c70
[ 63.533989] virtqueue_add+0x35c6/0x7c70
[ 63.534940] virtqueue_add_outbuf+0xa0/0xb0
[ 63.535861] start_xmit+0x288c/0x4a20
[ 63.536708] dev_hard_start_xmit+0x302/0x900
[ 63.537020] sch_direct_xmit+0x340/0xea0
[ 63.537997] __dev_queue_xmit+0x2e94/0x59b0
[ 63.538819] neigh_resolve_output+0x936/0xb40
[ 63.539793] ip_finish_output2+0x1ee2/0x2200
[ 63.540784] __ip_finish_output+0x272/0x7a0
[ 63.541765] ip_finish_output+0x4e/0x5e0
[ 63.542791] ip_output+0x166/0x410
[ 63.543771] ip_push_pending_frames+0x1a2/0x470
[ 63.544753] raw_sendmsg+0x1f06/0x2180
[ 63.545033] inet_sendmsg+0xe6/0x190
[ 63.546006] __sys_sendto+0x55e/0x8e0
---truncated--- |
| In the backup parameters, a user with high privilege is able to concatenate custom instructions to the backup setup. Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability in Centreon Infra Monitoring (Backup configuration in the administration setup modules) allows OS Command Injection.This issue affects Infra Monitoring: from 25.10.0 before 25.10.2, from 24.10.0 before 24.10.15, from 24.04.0 before 24.04.19. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Centreon Infra Monitoring (Hostgroup configuration page) allows Stored
XSS by users with elevated privileges.This issue affects Infra Monitoring: from 24.10.0 before 24.10.15, from 24.04.0 before 24.04.19, from 23.10.0 before 23.10.29. |
| Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') vulnerability in Centreon Infra Monitoring - Open-tickets (Notification rules configuration parameters, Open tickets modules) allows
SQL Injection to user with elevated privileges.This issue affects Infra Monitoring - Open-tickets: from 24.10.0 before 24.10.5, from 24.04.0 before 24.04.5, from 23.10.0 before 23.10.4. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| Missing Authorization vulnerability in Fahad Mahmood Easy Upload Files During Checkout allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Easy Upload Files During Checkout: from n/a through 3.0.0. |
| Cross-Site Request Forgery (CSRF) vulnerability in Appointify allows Cross Site Request Forgery.This issue affects Appointify: from n/a through 1.0.8. |
| Cross-Site Request Forgery (CSRF) vulnerability in Serhii Pasyuk Gmedia Photo Gallery allows Cross Site Request Forgery.This issue affects Gmedia Photo Gallery: from n/a through 1.24.1. |
| Cross-Site Request Forgery (CSRF) vulnerability in emendo_seb Co-marquage service-public.Fr allows Cross Site Request Forgery.This issue affects Co-marquage service-public.Fr: from n/a through 0.5.77. |
| Missing Authorization vulnerability in Northern Beaches Websites WP Custom Admin Interface allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects WP Custom Admin Interface: from n/a through 7.40. |
| Missing Authorization vulnerability in merkulove Questionar for Elementor allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Questionar for Elementor: from n/a through 1.1.7. |
| Missing Authorization vulnerability in merkulove Select Graphist for Elementor Graphist for Elementor allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Select Graphist for Elementor Graphist for Elementor: from n/a through 1.2.10. |