Search

Search Results (327883 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68817 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix use-after-free in ksmbd_tree_connect_put under concurrency Under high concurrency, A tree-connection object (tcon) is freed on a disconnect path while another path still holds a reference and later executes *_put()/write on it.
CVE-2025-68771 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix kernel BUG in ocfs2_find_victim_chain syzbot reported a kernel BUG in ocfs2_find_victim_chain() because the `cl_next_free_rec` field of the allocation chain list (next free slot in the chain list) is 0, triggring the BUG_ON(!cl->cl_next_free_rec) condition in ocfs2_find_victim_chain() and panicking the kernel. To fix this, an if condition is introduced in ocfs2_claim_suballoc_bits(), just before calling ocfs2_find_victim_chain(), the code block in it being executed when either of the following conditions is true: 1. `cl_next_free_rec` is equal to 0, indicating that there are no free chains in the allocation chain list 2. `cl_next_free_rec` is greater than `cl_count` (the total number of chains in the allocation chain list) Either of them being true is indicative of the fact that there are no chains left for usage. This is addressed using ocfs2_error(), which prints the error log for debugging purposes, rather than panicking the kernel.
CVE-2025-68811 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: svcrdma: use rc_pageoff for memcpy byte offset svc_rdma_copy_inline_range added rc_curpage (page index) to the page base instead of the byte offset rc_pageoff. Use rc_pageoff so copies land within the current page. Found by ZeroPath (https://zeropath.com)
CVE-2025-68799 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: caif: fix integer underflow in cffrml_receive() The cffrml_receive() function extracts a length field from the packet header and, when FCS is disabled, subtracts 2 from this length without validating that len >= 2. If an attacker sends a malicious packet with a length field of 0 or 1 to an interface with FCS disabled, the subtraction causes an integer underflow. This can lead to memory exhaustion and kernel instability, potential information disclosure if padding contains uninitialized kernel memory. Fix this by validating that len >= 2 before performing the subtraction.
CVE-2025-68789 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hwmon: (ibmpex) fix use-after-free in high/low store The ibmpex_high_low_store() function retrieves driver data using dev_get_drvdata() and uses it without validation. This creates a race condition where the sysfs callback can be invoked after the data structure is freed, leading to use-after-free. Fix by adding a NULL check after dev_get_drvdata(), and reordering operations in the deletion path to prevent TOCTOU.
CVE-2025-71097 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix reference count leak when using error routes with nexthop objects When a nexthop object is deleted, it is marked as dead and then fib_table_flush() is called to flush all the routes that are using the dead nexthop. The current logic in fib_table_flush() is to only flush error routes (e.g., blackhole) when it is called as part of network namespace dismantle (i.e., with flush_all=true). Therefore, error routes are not flushed when their nexthop object is deleted: # ip link add name dummy1 up type dummy # ip nexthop add id 1 dev dummy1 # ip route add 198.51.100.1/32 nhid 1 # ip route add blackhole 198.51.100.2/32 nhid 1 # ip nexthop del id 1 # ip route show blackhole 198.51.100.2 nhid 1 dev dummy1 As such, they keep holding a reference on the nexthop object which in turn holds a reference on the nexthop device, resulting in a reference count leak: # ip link del dev dummy1 [ 70.516258] unregister_netdevice: waiting for dummy1 to become free. Usage count = 2 Fix by flushing error routes when their nexthop is marked as dead. IPv6 does not suffer from this problem.
CVE-2025-71095 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: fix the crash issue for zero copy XDP_TX action There is a crash issue when running zero copy XDP_TX action, the crash log is shown below. [ 216.122464] Unable to handle kernel paging request at virtual address fffeffff80000000 [ 216.187524] Internal error: Oops: 0000000096000144 [#1] SMP [ 216.301694] Call trace: [ 216.304130] dcache_clean_poc+0x20/0x38 (P) [ 216.308308] __dma_sync_single_for_device+0x1bc/0x1e0 [ 216.313351] stmmac_xdp_xmit_xdpf+0x354/0x400 [ 216.317701] __stmmac_xdp_run_prog+0x164/0x368 [ 216.322139] stmmac_napi_poll_rxtx+0xba8/0xf00 [ 216.326576] __napi_poll+0x40/0x218 [ 216.408054] Kernel panic - not syncing: Oops: Fatal exception in interrupt For XDP_TX action, the xdp_buff is converted to xdp_frame by xdp_convert_buff_to_frame(). The memory type of the resulting xdp_frame depends on the memory type of the xdp_buff. For page pool based xdp_buff it produces xdp_frame with memory type MEM_TYPE_PAGE_POOL. For zero copy XSK pool based xdp_buff it produces xdp_frame with memory type MEM_TYPE_PAGE_ORDER0. However, stmmac_xdp_xmit_back() does not check the memory type and always uses the page pool type, this leads to invalid mappings and causes the crash. Therefore, check the xdp_buff memory type in stmmac_xdp_xmit_back() to fix this issue.
CVE-2025-71094 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: usb: asix: validate PHY address before use The ASIX driver reads the PHY address from the USB device via asix_read_phy_addr(). A malicious or faulty device can return an invalid address (>= PHY_MAX_ADDR), which causes a warning in mdiobus_get_phy(): addr 207 out of range WARNING: drivers/net/phy/mdio_bus.c:76 Validate the PHY address in asix_read_phy_addr() and remove the now-redundant check in ax88172a.c.
CVE-2025-71090 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: nfsd: fix nfsd_file reference leak in nfsd4_add_rdaccess_to_wrdeleg() nfsd4_add_rdaccess_to_wrdeleg() unconditionally overwrites fp->fi_fds[O_RDONLY] with a newly acquired nfsd_file. However, if the client already has a SHARE_ACCESS_READ open from a previous OPEN operation, this action overwrites the existing pointer without releasing its reference, orphaning the previous reference. Additionally, the function originally stored the same nfsd_file pointer in both fp->fi_fds[O_RDONLY] and fp->fi_rdeleg_file with only a single reference. When put_deleg_file() runs, it clears fi_rdeleg_file and calls nfs4_file_put_access() to release the file. However, nfs4_file_put_access() only releases fi_fds[O_RDONLY] when the fi_access[O_RDONLY] counter drops to zero. If another READ open exists on the file, the counter remains elevated and the nfsd_file reference from the delegation is never released. This potentially causes open conflicts on that file. Then, on server shutdown, these leaks cause __nfsd_file_cache_purge() to encounter files with an elevated reference count that cannot be cleaned up, ultimately triggering a BUG() in kmem_cache_destroy() because there are still nfsd_file objects allocated in that cache.
CVE-2025-71089 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: iommu: disable SVA when CONFIG_X86 is set Patch series "Fix stale IOTLB entries for kernel address space", v7. This proposes a fix for a security vulnerability related to IOMMU Shared Virtual Addressing (SVA). In an SVA context, an IOMMU can cache kernel page table entries. When a kernel page table page is freed and reallocated for another purpose, the IOMMU might still hold stale, incorrect entries. This can be exploited to cause a use-after-free or write-after-free condition, potentially leading to privilege escalation or data corruption. This solution introduces a deferred freeing mechanism for kernel page table pages, which provides a safe window to notify the IOMMU to invalidate its caches before the page is reused. This patch (of 8): In the IOMMU Shared Virtual Addressing (SVA) context, the IOMMU hardware shares and walks the CPU's page tables. The x86 architecture maps the kernel's virtual address space into the upper portion of every process's page table. Consequently, in an SVA context, the IOMMU hardware can walk and cache kernel page table entries. The Linux kernel currently lacks a notification mechanism for kernel page table changes, specifically when page table pages are freed and reused. The IOMMU driver is only notified of changes to user virtual address mappings. This can cause the IOMMU's internal caches to retain stale entries for kernel VA. Use-After-Free (UAF) and Write-After-Free (WAF) conditions arise when kernel page table pages are freed and later reallocated. The IOMMU could misinterpret the new data as valid page table entries. The IOMMU might then walk into attacker-controlled memory, leading to arbitrary physical memory DMA access or privilege escalation. This is also a Write-After-Free issue, as the IOMMU will potentially continue to write Accessed and Dirty bits to the freed memory while attempting to walk the stale page tables. Currently, SVA contexts are unprivileged and cannot access kernel mappings. However, the IOMMU will still walk kernel-only page tables all the way down to the leaf entries, where it realizes the mapping is for the kernel and errors out. This means the IOMMU still caches these intermediate page table entries, making the described vulnerability a real concern. Disable SVA on x86 architecture until the IOMMU can receive notification to flush the paging cache before freeing the CPU kernel page table pages.
CVE-2025-71088 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: fallback earlier on simult connection Syzkaller reports a simult-connect race leading to inconsistent fallback status: WARNING: CPU: 3 PID: 33 at net/mptcp/subflow.c:1515 subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515 Modules linked in: CPU: 3 UID: 0 PID: 33 Comm: ksoftirqd/3 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515 Code: 89 ee e8 78 61 3c f6 40 84 ed 75 21 e8 8e 66 3c f6 44 89 fe bf 07 00 00 00 e8 c1 61 3c f6 41 83 ff 07 74 09 e8 76 66 3c f6 90 <0f> 0b 90 e8 6d 66 3c f6 48 89 df e8 e5 ad ff ff 31 ff 89 c5 89 c6 RSP: 0018:ffffc900006cf338 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888031acd100 RCX: ffffffff8b7f2abf RDX: ffff88801e6ea440 RSI: ffffffff8b7f2aca RDI: 0000000000000005 RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000007 R10: 0000000000000004 R11: 0000000000002c10 R12: ffff88802ba69900 R13: 1ffff920000d9e67 R14: ffff888046f81800 R15: 0000000000000004 FS: 0000000000000000(0000) GS:ffff8880d69bc000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000560fc0ca1670 CR3: 0000000032c3a000 CR4: 0000000000352ef0 Call Trace: <TASK> tcp_data_queue+0x13b0/0x4f90 net/ipv4/tcp_input.c:5197 tcp_rcv_state_process+0xfdf/0x4ec0 net/ipv4/tcp_input.c:6922 tcp_v6_do_rcv+0x492/0x1740 net/ipv6/tcp_ipv6.c:1672 tcp_v6_rcv+0x2976/0x41e0 net/ipv6/tcp_ipv6.c:1918 ip6_protocol_deliver_rcu+0x188/0x1520 net/ipv6/ip6_input.c:438 ip6_input_finish+0x1e4/0x4b0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] ip6_input+0x105/0x2f0 net/ipv6/ip6_input.c:500 dst_input include/net/dst.h:471 [inline] ip6_rcv_finish net/ipv6/ip6_input.c:79 [inline] NF_HOOK include/linux/netfilter.h:318 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] ipv6_rcv+0x264/0x650 net/ipv6/ip6_input.c:311 __netif_receive_skb_one_core+0x12d/0x1e0 net/core/dev.c:5979 __netif_receive_skb+0x1d/0x160 net/core/dev.c:6092 process_backlog+0x442/0x15e0 net/core/dev.c:6444 __napi_poll.constprop.0+0xba/0x550 net/core/dev.c:7494 napi_poll net/core/dev.c:7557 [inline] net_rx_action+0xa9f/0xfe0 net/core/dev.c:7684 handle_softirqs+0x216/0x8e0 kernel/softirq.c:579 run_ksoftirqd kernel/softirq.c:968 [inline] run_ksoftirqd+0x3a/0x60 kernel/softirq.c:960 smpboot_thread_fn+0x3f7/0xae0 kernel/smpboot.c:160 kthread+0x3c2/0x780 kernel/kthread.c:463 ret_from_fork+0x5d7/0x6f0 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> The TCP subflow can process the simult-connect syn-ack packet after transitioning to TCP_FIN1 state, bypassing the MPTCP fallback check, as the sk_state_change() callback is not invoked for * -> FIN_WAIT1 transitions. That will move the msk socket to an inconsistent status and the next incoming data will hit the reported splat. Close the race moving the simult-fallback check at the earliest possible stage - that is at syn-ack generation time. About the fixes tags: [2] was supposed to also fix this issue introduced by [3]. [1] is required as a dependence: it was not explicitly marked as a fix, but it is one and it has already been backported before [3]. In other words, this commit should be backported up to [3], including [2] and [1] if that's not already there.
CVE-2025-71086 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: rose: fix invalid array index in rose_kill_by_device() rose_kill_by_device() collects sockets into a local array[] and then iterates over them to disconnect sockets bound to a device being brought down. The loop mistakenly indexes array[cnt] instead of array[i]. For cnt < ARRAY_SIZE(array), this reads an uninitialized entry; for cnt == ARRAY_SIZE(array), it is an out-of-bounds read. Either case can lead to an invalid socket pointer dereference and also leaks references taken via sock_hold(). Fix the index to use i.
CVE-2025-71085 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: BUG() in pskb_expand_head() as part of calipso_skbuff_setattr() There exists a kernel oops caused by a BUG_ON(nhead < 0) at net/core/skbuff.c:2232 in pskb_expand_head(). This bug is triggered as part of the calipso_skbuff_setattr() routine when skb_cow() is passed headroom > INT_MAX (i.e. (int)(skb_headroom(skb) + len_delta) < 0). The root cause of the bug is due to an implicit integer cast in __skb_cow(). The check (headroom > skb_headroom(skb)) is meant to ensure that delta = headroom - skb_headroom(skb) is never negative, otherwise we will trigger a BUG_ON in pskb_expand_head(). However, if headroom > INT_MAX and delta <= -NET_SKB_PAD, the check passes, delta becomes negative, and pskb_expand_head() is passed a negative value for nhead. Fix the trigger condition in calipso_skbuff_setattr(). Avoid passing "negative" headroom sizes to skb_cow() within calipso_skbuff_setattr() by only using skb_cow() to grow headroom. PoC: Using `netlabelctl` tool: netlabelctl map del default netlabelctl calipso add pass doi:7 netlabelctl map add default address:0::1/128 protocol:calipso,7 Then run the following PoC: int fd = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP); // setup msghdr int cmsg_size = 2; int cmsg_len = 0x60; struct msghdr msg; struct sockaddr_in6 dest_addr; struct cmsghdr * cmsg = (struct cmsghdr *) calloc(1, sizeof(struct cmsghdr) + cmsg_len); msg.msg_name = &dest_addr; msg.msg_namelen = sizeof(dest_addr); msg.msg_iov = NULL; msg.msg_iovlen = 0; msg.msg_control = cmsg; msg.msg_controllen = cmsg_len; msg.msg_flags = 0; // setup sockaddr dest_addr.sin6_family = AF_INET6; dest_addr.sin6_port = htons(31337); dest_addr.sin6_flowinfo = htonl(31337); dest_addr.sin6_addr = in6addr_loopback; dest_addr.sin6_scope_id = 31337; // setup cmsghdr cmsg->cmsg_len = cmsg_len; cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_HOPOPTS; char * hop_hdr = (char *)cmsg + sizeof(struct cmsghdr); hop_hdr[1] = 0x9; //set hop size - (0x9 + 1) * 8 = 80 sendmsg(fd, &msg, 0);
CVE-2025-71081 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ASoC: stm32: sai: fix OF node leak on probe The reference taken to the sync provider OF node when probing the platform device is currently only dropped if the set_sync() callback fails during DAI probe. Make sure to drop the reference on platform probe failures (e.g. probe deferral) and on driver unbind. This also avoids a potential use-after-free in case the DAI is ever reprobed without first rebinding the platform driver.
CVE-2025-71079 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: nfc: fix deadlock between nfc_unregister_device and rfkill_fop_write A deadlock can occur between nfc_unregister_device() and rfkill_fop_write() due to lock ordering inversion between device_lock and rfkill_global_mutex. The problematic lock order is: Thread A (rfkill_fop_write): rfkill_fop_write() mutex_lock(&rfkill_global_mutex) rfkill_set_block() nfc_rfkill_set_block() nfc_dev_down() device_lock(&dev->dev) <- waits for device_lock Thread B (nfc_unregister_device): nfc_unregister_device() device_lock(&dev->dev) rfkill_unregister() mutex_lock(&rfkill_global_mutex) <- waits for rfkill_global_mutex This creates a classic ABBA deadlock scenario. Fix this by moving rfkill_unregister() and rfkill_destroy() outside the device_lock critical section. Store the rfkill pointer in a local variable before releasing the lock, then call rfkill_unregister() after releasing device_lock. This change is safe because rfkill_fop_write() holds rfkill_global_mutex while calling the rfkill callbacks, and rfkill_unregister() also acquires rfkill_global_mutex before cleanup. Therefore, rfkill_unregister() will wait for any ongoing callback to complete before proceeding, and device_del() is only called after rfkill_unregister() returns, preventing any use-after-free. The similar lock ordering in nfc_register_device() (device_lock -> rfkill_global_mutex via rfkill_register) is safe because during registration the device is not yet in rfkill_list, so no concurrent rfkill operations can occur on this device.
CVE-2025-71076 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Limit num_syncs to prevent oversized allocations The OA open parameters did not validate num_syncs, allowing userspace to pass arbitrarily large values, potentially leading to excessive allocations. Add check to ensure that num_syncs does not exceed DRM_XE_MAX_SYNCS, returning -EINVAL when the limit is violated. v2: use XE_IOCTL_DBG() and drop duplicated check. (Ashutosh) (cherry picked from commit e057b2d2b8d815df3858a87dffafa2af37e5945b)
CVE-2025-71074 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: functionfs: fix the open/removal races ffs_epfile_open() can race with removal, ending up with file->private_data pointing to freed object. There is a total count of opened files on functionfs (both ep0 and dynamic ones) and when it hits zero, dynamic files get removed. Unfortunately, that removal can happen while another thread is in ffs_epfile_open(), but has not incremented the count yet. In that case open will succeed, leaving us with UAF on any subsequent read() or write(). The root cause is that ffs->opened is misused; atomic_dec_and_test() vs. atomic_add_return() is not a good idea, when object remains visible all along. To untangle that * serialize openers on ffs->mutex (both for ep0 and for dynamic files) * have dynamic ones use atomic_inc_not_zero() and fail if we had zero ->opened; in that case the file we are opening is doomed. * have the inodes of dynamic files marked on removal (from the callback of simple_recursive_removal()) - clear ->i_private there. * have open of dynamic ones verify they hadn't been already removed, along with checking that state is FFS_ACTIVE.
CVE-2025-71073 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: lkkbd - disable pending work before freeing device lkkbd_interrupt() schedules lk->tq via schedule_work(), and the work handler lkkbd_reinit() dereferences the lkkbd structure and its serio/input_dev fields. lkkbd_disconnect() and error paths in lkkbd_connect() free the lkkbd structure without preventing the reinit work from being queued again until serio_close() returns. This can allow the work handler to run after the structure has been freed, leading to a potential use-after-free. Use disable_work_sync() instead of cancel_work_sync() to ensure the reinit work cannot be re-queued, and call it both in lkkbd_disconnect() and in lkkbd_connect() error paths after serio_open().
CVE-2025-71066 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: ets: Always remove class from active list before deleting in ets_qdisc_change zdi-disclosures@trendmicro.com says: The vulnerability is a race condition between `ets_qdisc_dequeue` and `ets_qdisc_change`. It leads to UAF on `struct Qdisc` object. Attacker requires the capability to create new user and network namespace in order to trigger the bug. See my additional commentary at the end of the analysis. Analysis: static int ets_qdisc_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { ... // (1) this lock is preventing .change handler (`ets_qdisc_change`) //to race with .dequeue handler (`ets_qdisc_dequeue`) sch_tree_lock(sch); for (i = nbands; i < oldbands; i++) { if (i >= q->nstrict && q->classes[i].qdisc->q.qlen) list_del_init(&q->classes[i].alist); qdisc_purge_queue(q->classes[i].qdisc); } WRITE_ONCE(q->nbands, nbands); for (i = nstrict; i < q->nstrict; i++) { if (q->classes[i].qdisc->q.qlen) { // (2) the class is added to the q->active list_add_tail(&q->classes[i].alist, &q->active); q->classes[i].deficit = quanta[i]; } } WRITE_ONCE(q->nstrict, nstrict); memcpy(q->prio2band, priomap, sizeof(priomap)); for (i = 0; i < q->nbands; i++) WRITE_ONCE(q->classes[i].quantum, quanta[i]); for (i = oldbands; i < q->nbands; i++) { q->classes[i].qdisc = queues[i]; if (q->classes[i].qdisc != &noop_qdisc) qdisc_hash_add(q->classes[i].qdisc, true); } // (3) the qdisc is unlocked, now dequeue can be called in parallel // to the rest of .change handler sch_tree_unlock(sch); ets_offload_change(sch); for (i = q->nbands; i < oldbands; i++) { // (4) we're reducing the refcount for our class's qdisc and // freeing it qdisc_put(q->classes[i].qdisc); // (5) If we call .dequeue between (4) and (5), we will have // a strong UAF and we can control RIP q->classes[i].qdisc = NULL; WRITE_ONCE(q->classes[i].quantum, 0); q->classes[i].deficit = 0; gnet_stats_basic_sync_init(&q->classes[i].bstats); memset(&q->classes[i].qstats, 0, sizeof(q->classes[i].qstats)); } return 0; } Comment: This happens because some of the classes have their qdiscs assigned to NULL, but remain in the active list. This commit fixes this issue by always removing the class from the active list before deleting and freeing its associated qdisc Reproducer Steps (trimmed version of what was sent by zdi-disclosures@trendmicro.com) ``` DEV="${DEV:-lo}" ROOT_HANDLE="${ROOT_HANDLE:-1:}" BAND2_HANDLE="${BAND2_HANDLE:-20:}" # child under 1:2 PING_BYTES="${PING_BYTES:-48}" PING_COUNT="${PING_COUNT:-200000}" PING_DST="${PING_DST:-127.0.0.1}" SLOW_TBF_RATE="${SLOW_TBF_RATE:-8bit}" SLOW_TBF_BURST="${SLOW_TBF_BURST:-100b}" SLOW_TBF_LAT="${SLOW_TBF_LAT:-1s}" cleanup() { tc qdisc del dev "$DEV" root 2>/dev/null } trap cleanup EXIT ip link set "$DEV" up tc qdisc del dev "$DEV" root 2>/dev/null || true tc qdisc add dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2 tc qdisc add dev "$DEV" parent 1:2 handle "$BAND2_HANDLE" \ tbf rate "$SLOW_TBF_RATE" burst "$SLOW_TBF_BURST" latency "$SLOW_TBF_LAT" tc filter add dev "$DEV" parent 1: protocol all prio 1 u32 match u32 0 0 flowid 1:2 tc -s qdisc ls dev $DEV ping -I "$DEV" -f -c "$PING_COUNT" -s "$PING_BYTES" -W 0.001 "$PING_DST" \ >/dev/null 2>&1 & tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 0 tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2 tc -s qdisc ls dev $DEV tc qdisc del dev "$DEV" parent ---truncated---
CVE-2025-71023 1 Tenda 1 Ax3 2026-01-14 7.5 High
Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the mac2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.