Search

Search Results (327825 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68961 1 Huawei 1 Harmonyos 2026-01-14 5.1 Medium
Multi-thread race condition vulnerability in the camera framework module. Impact: Successful exploitation of this vulnerability may affect availability.
CVE-2026-22211 2026-01-14 N/A
TinyOS versions up to and including 2.1.2 contain a global buffer overflow vulnerability in the printfUART formatted output implementation used within the ZigBee / IEEE 802.15.4 networking stack. The implementation formats output into a fixed-size global buffer and concatenates strings for %s format specifiers using strcat() without verifying remaining buffer capacity. When printfUART is invoked with a caller-controlled string longer than the available space, the unbounded sprintf/strcat sequence writes past the end of debugbuf, resulting in global memory corruption. This can cause denial of service, unintended behavior, or information disclosure via corrupted adjacent global state or UART output.
CVE-2026-22236 2026-01-14 N/A
The vulnerability exists in BLUVOYIX due to improper authentication in the BLUVOYIX backend APIs. An unauthenticated remote attacker could exploit this vulnerability by sending specially crafted HTTP requests to the vulnerable APIs. Successful exploitation of this vulnerability could allow the attacker to gain full access to customers' data and completely compromise the targeted platform.
CVE-2026-22237 2026-01-14 N/A
The vulnerability exists in BLUVOYIX due to the exposure of sensitive internal API documentation. An unauthenticated remote attacker could exploit this vulnerability by sending specially crafted HTTP requests to the APIs exposed by the documentation. Successful exploitation of this vulnerability could allow the attacker to cause damage to the targeted platform by abusing internal functionality.
CVE-2026-22239 2026-01-14 N/A
The vulnerability exists in BLUVOYIX due to design flaws in the email sending API. An unauthenticated remote attacker could exploit this vulnerability by sending specially crafted HTTP requests to the vulnerable email sending API. Successful exploitation of this vulnerability could allow the attacker to send unsolicited emails to anyone on behalf of the company.
CVE-2026-22240 2026-01-14 N/A
The vulnerability exists in BLUVOYIX due to an improper password storage implementation and subsequent exposure via unauthenticated APIs. An unauthenticated remote attacker could exploit this vulnerability by sending specially crafted HTTP requests to the vulnerable users API to retrieve the plaintext passwords of all user users. Successful exploitation of this vulnerability could allow the attacker to gain full access to customers' data and completely compromise the targeted platform by logging in using an exposed admin email address and password.
CVE-2026-22718 1 Spring 1 Cli Vscode Extension 2026-01-14 6.8 Medium
The VSCode extension for Spring CLI are vulnerable to command injection, resulting in command execution on the users machine.
CVE-2026-22686 1 Agentfront 1 Enclave 2026-01-14 10 Critical
Enclave is a secure JavaScript sandbox designed for safe AI agent code execution. Prior to 2.7.0, there is a critical sandbox escape vulnerability in enclave-vm that allows untrusted, sandboxed JavaScript code to execute arbitrary code in the host Node.js runtime. When a tool invocation fails, enclave-vm exposes a host-side Error object to sandboxed code. This Error object retains its host realm prototype chain, which can be traversed to reach the host Function constructor. An attacker can intentionally trigger a host error, then climb the prototype chain. Using the host Function constructor, arbitrary JavaScript can be compiled and executed in the host context, fully bypassing the sandbox and granting access to sensitive resources such as process.env, filesystem, and network. This breaks enclave-vm’s core security guarantee of isolating untrusted code. This vulnerability is fixed in 2.7.0.
CVE-2022-50911 1 Bitrix24 1 Bitrix24 2026-01-14 8.8 High
Bitrix24 contains an authenticated remote code execution vulnerability that allows logged-in attackers to execute arbitrary system commands through the PHP command line admin interface. Attackers can leverage the vulnerability by sending crafted POST requests to the administrative endpoint with system commands to execute code with the web application's privileges.
CVE-2022-50913 1 Itec 1 Tcq 2026-01-14 8.4 High
ITeC ITeCProteccioAppServer contains an unquoted service path vulnerability that allows local attackers to execute code with elevated system privileges. Attackers can insert a malicious executable in the service path to gain elevated access during service restart or system reboot.
CVE-2026-0532 2026-01-14 8.6 High
External Control of File Name or Path (CWE-73) combined with Server-Side Request Forgery (CWE-918) can allow an attacker to cause arbitrary file disclosure through a specially crafted credentials JSON payload in the Google Gemini connector configuration. This requires an attacker to have authenticated access with privileges sufficient to create or modify connectors (Alerts & Connectors: All). The server processes a configuration without proper validation, allowing for arbitrary network requests and for arbitrary file reads.
CVE-2025-68959 2026-01-14 6.2 Medium
Permission verification bypass vulnerability in the media library module. Impact: Successful exploitation of this vulnerability may affect service confidentiality.
CVE-2025-13175 2026-01-14 N/A
Y Soft SafeQ 6 renders the Workflow Connector password field in a way that allows an administrator with UI access to reveal the value using browser developer/inspection tools. The affected customers are only those with a password-protected scan workflow connector. This issue affects Y Soft SafeQ 6 in versions before MU106.
CVE-2025-56226 2026-01-14 5.3 Medium
Libsndfile <=1.2.2 contains a memory leak vulnerability in the mpeg_l3_encoder_init() function within the mpeg_l3_encode.c file.
CVE-2025-68962 1 Huawei 1 Harmonyos 2026-01-14 5.1 Medium
Multi-thread race condition vulnerability in the camera framework module. Impact: Successful exploitation of this vulnerability may affect availability.
CVE-2025-68968 1 Huawei 1 Harmonyos 2026-01-14 7.8 High
Double free vulnerability in the multi-mode input module. Impact: Successful exploitation of this vulnerability may affect the input function.
CVE-2025-71104 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Fix VM hard lockup after prolonged inactivity with periodic HV timer When advancing the target expiration for the guest's APIC timer in periodic mode, set the expiration to "now" if the target expiration is in the past (similar to what is done in update_target_expiration()). Blindly adding the period to the previous target expiration can result in KVM generating a practically unbounded number of hrtimer IRQs due to programming an expired timer over and over. In extreme scenarios, e.g. if userspace pauses/suspends a VM for an extended duration, this can even cause hard lockups in the host. Currently, the bug only affects Intel CPUs when using the hypervisor timer (HV timer), a.k.a. the VMX preemption timer. Unlike the software timer, a.k.a. hrtimer, which KVM keeps running even on exits to userspace, the HV timer only runs while the guest is active. As a result, if the vCPU does not run for an extended duration, there will be a huge gap between the target expiration and the current time the vCPU resumes running. Because the target expiration is incremented by only one period on each timer expiration, this leads to a series of timer expirations occurring rapidly after the vCPU/VM resumes. More critically, when the vCPU first triggers a periodic HV timer expiration after resuming, advancing the expiration by only one period will result in a target expiration in the past. As a result, the delta may be calculated as a negative value. When the delta is converted into an absolute value (tscdeadline is an unsigned u64), the resulting value can overflow what the HV timer is capable of programming. I.e. the large value will exceed the VMX Preemption Timer's maximum bit width of cpu_preemption_timer_multi + 32, and thus cause KVM to switch from the HV timer to the software timer (hrtimers). After switching to the software timer, periodic timer expiration callbacks may be executed consecutively within a single clock interrupt handler, because hrtimers honors KVM's request for an expiration in the past and immediately re-invokes KVM's callback after reprogramming. And because the interrupt handler runs with IRQs disabled, restarting KVM's hrtimer over and over until the target expiration is advanced to "now" can result in a hard lockup. E.g. the following hard lockup was triggered in the host when running a Windows VM (only relevant because it used the APIC timer in periodic mode) after resuming the VM from a long suspend (in the host). NMI watchdog: Watchdog detected hard LOCKUP on cpu 45 ... RIP: 0010:advance_periodic_target_expiration+0x4d/0x80 [kvm] ... RSP: 0018:ff4f88f5d98d8ef0 EFLAGS: 00000046 RAX: fff0103f91be678e RBX: fff0103f91be678e RCX: 00843a7d9e127bcc RDX: 0000000000000002 RSI: 0052ca4003697505 RDI: ff440d5bfbdbd500 RBP: ff440d5956f99200 R08: ff2ff2a42deb6a84 R09: 000000000002a6c0 R10: 0122d794016332b3 R11: 0000000000000000 R12: ff440db1af39cfc0 R13: ff440db1af39cfc0 R14: ffffffffc0d4a560 R15: ff440db1af39d0f8 FS: 00007f04a6ffd700(0000) GS:ff440db1af380000(0000) knlGS:000000e38a3b8000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000d5651feff8 CR3: 000000684e038002 CR4: 0000000000773ee0 PKRU: 55555554 Call Trace: <IRQ> apic_timer_fn+0x31/0x50 [kvm] __hrtimer_run_queues+0x100/0x280 hrtimer_interrupt+0x100/0x210 ? ttwu_do_wakeup+0x19/0x160 smp_apic_timer_interrupt+0x6a/0x130 apic_timer_interrupt+0xf/0x20 </IRQ> Moreover, if the suspend duration of the virtual machine is not long enough to trigger a hard lockup in this scenario, since commit 98c25ead5eda ("KVM: VMX: Move preemption timer <=> hrtimer dance to common x86"), KVM will continue using the software timer until the guest reprograms the APIC timer in some way. Since the periodic timer does not require frequent APIC timer register programming, the guest may continue to use the software timer in ---truncated---
CVE-2025-71105 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: use global inline_xattr_slab instead of per-sb slab cache As Hong Yun reported in mailing list: loop7: detected capacity change from 0 to 131072 ------------[ cut here ]------------ kmem_cache of name 'f2fs_xattr_entry-7:7' already exists WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 kmem_cache_sanity_check mm/slab_common.c:109 [inline] WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 __kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307 CPU: 0 UID: 0 PID: 24426 Comm: syz.7.1370 Not tainted 6.17.0-rc4 #1 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: 0010:kmem_cache_sanity_check mm/slab_common.c:109 [inline] RIP: 0010:__kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307 Call Trace:  __kmem_cache_create include/linux/slab.h:353 [inline]  f2fs_kmem_cache_create fs/f2fs/f2fs.h:2943 [inline]  f2fs_init_xattr_caches+0xa5/0xe0 fs/f2fs/xattr.c:843  f2fs_fill_super+0x1645/0x2620 fs/f2fs/super.c:4918  get_tree_bdev_flags+0x1fb/0x260 fs/super.c:1692  vfs_get_tree+0x43/0x140 fs/super.c:1815  do_new_mount+0x201/0x550 fs/namespace.c:3808  do_mount fs/namespace.c:4136 [inline]  __do_sys_mount fs/namespace.c:4347 [inline]  __se_sys_mount+0x298/0x2f0 fs/namespace.c:4324  do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]  do_syscall_64+0x8e/0x3a0 arch/x86/entry/syscall_64.c:94  entry_SYSCALL_64_after_hwframe+0x76/0x7e The bug can be reproduced w/ below scripts: - mount /dev/vdb /mnt1 - mount /dev/vdc /mnt2 - umount /mnt1 - mounnt /dev/vdb /mnt1 The reason is if we created two slab caches, named f2fs_xattr_entry-7:3 and f2fs_xattr_entry-7:7, and they have the same slab size. Actually, slab system will only create one slab cache core structure which has slab name of "f2fs_xattr_entry-7:3", and two slab caches share the same structure and cache address. So, if we destroy f2fs_xattr_entry-7:3 cache w/ cache address, it will decrease reference count of slab cache, rather than release slab cache entirely, since there is one more user has referenced the cache. Then, if we try to create slab cache w/ name "f2fs_xattr_entry-7:3" again, slab system will find that there is existed cache which has the same name and trigger the warning. Let's changes to use global inline_xattr_slab instead of per-sb slab cache for fixing.
CVE-2025-71126 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: mptcp: avoid deadlock on fallback while reinjecting Jakub reported an MPTCP deadlock at fallback time: WARNING: possible recursive locking detected 6.18.0-rc7-virtme #1 Not tainted -------------------------------------------- mptcp_connect/20858 is trying to acquire lock: ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_try_fallback+0xd8/0x280 but task is already holding lock: ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_retrans+0x352/0xaa0 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&msk->fallback_lock); lock(&msk->fallback_lock); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by mptcp_connect/20858: #0: ff1100001da18290 (sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_sendmsg+0x114/0x1bc0 #1: ff1100001db40fd0 (k-sk_lock-AF_INET#2){+.+.}-{0:0}, at: __mptcp_retrans+0x2cb/0xaa0 #2: ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_retrans+0x352/0xaa0 stack backtrace: CPU: 0 UID: 0 PID: 20858 Comm: mptcp_connect Not tainted 6.18.0-rc7-virtme #1 PREEMPT(full) Hardware name: Bochs, BIOS Bochs 01/01/2011 Call Trace: <TASK> dump_stack_lvl+0x6f/0xa0 print_deadlock_bug.cold+0xc0/0xcd validate_chain+0x2ff/0x5f0 __lock_acquire+0x34c/0x740 lock_acquire.part.0+0xbc/0x260 _raw_spin_lock_bh+0x38/0x50 __mptcp_try_fallback+0xd8/0x280 mptcp_sendmsg_frag+0x16c2/0x3050 __mptcp_retrans+0x421/0xaa0 mptcp_release_cb+0x5aa/0xa70 release_sock+0xab/0x1d0 mptcp_sendmsg+0xd5b/0x1bc0 sock_write_iter+0x281/0x4d0 new_sync_write+0x3c5/0x6f0 vfs_write+0x65e/0xbb0 ksys_write+0x17e/0x200 do_syscall_64+0xbb/0xfd0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7fa5627cbc5e Code: 4d 89 d8 e8 14 bd 00 00 4c 8b 5d f8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 74 11 c9 c3 0f 1f 80 00 00 00 00 48 8b 45 10 0f 05 <c9> c3 83 e2 39 83 fa 08 75 e7 e8 13 ff ff ff 0f 1f 00 f3 0f 1e fa RSP: 002b:00007fff1fe14700 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 00007fa5627cbc5e RDX: 0000000000001f9c RSI: 00007fff1fe16984 RDI: 0000000000000005 RBP: 00007fff1fe14710 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000202 R12: 00007fff1fe16920 R13: 0000000000002000 R14: 0000000000001f9c R15: 0000000000001f9c The packet scheduler could attempt a reinjection after receiving an MP_FAIL and before the infinite map has been transmitted, causing a deadlock since MPTCP needs to do the reinjection atomically from WRT fallback. Address the issue explicitly avoiding the reinjection in the critical scenario. Note that this is the only fallback critical section that could potentially send packets and hit the double-lock.
CVE-2025-71134 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/page_alloc: change all pageblocks migrate type on coalescing When a page is freed it coalesces with a buddy into a higher order page while possible. When the buddy page migrate type differs, it is expected to be updated to match the one of the page being freed. However, only the first pageblock of the buddy page is updated, while the rest of the pageblocks are left unchanged. That causes warnings in later expand() and other code paths (like below), since an inconsistency between migration type of the list containing the page and the page-owned pageblocks migration types is introduced. [ 308.986589] ------------[ cut here ]------------ [ 308.987227] page type is 0, passed migratetype is 1 (nr=256) [ 308.987275] WARNING: CPU: 1 PID: 5224 at mm/page_alloc.c:812 expand+0x23c/0x270 [ 308.987293] Modules linked in: algif_hash(E) af_alg(E) nft_fib_inet(E) nft_fib_ipv4(E) nft_fib_ipv6(E) nft_fib(E) nft_reject_inet(E) nf_reject_ipv4(E) nf_reject_ipv6(E) nft_reject(E) nft_ct(E) nft_chain_nat(E) nf_nat(E) nf_conntrack(E) nf_defrag_ipv6(E) nf_defrag_ipv4(E) nf_tables(E) s390_trng(E) vfio_ccw(E) mdev(E) vfio_iommu_type1(E) vfio(E) sch_fq_codel(E) drm(E) i2c_core(E) drm_panel_orientation_quirks(E) loop(E) nfnetlink(E) vsock_loopback(E) vmw_vsock_virtio_transport_common(E) vsock(E) ctcm(E) fsm(E) diag288_wdt(E) watchdog(E) zfcp(E) scsi_transport_fc(E) ghash_s390(E) prng(E) aes_s390(E) des_generic(E) des_s390(E) libdes(E) sha3_512_s390(E) sha3_256_s390(E) sha_common(E) paes_s390(E) crypto_engine(E) pkey_cca(E) pkey_ep11(E) zcrypt(E) rng_core(E) pkey_pckmo(E) pkey(E) autofs4(E) [ 308.987439] Unloaded tainted modules: hmac_s390(E):2 [ 308.987650] CPU: 1 UID: 0 PID: 5224 Comm: mempig_verify Kdump: loaded Tainted: G E 6.18.0-gcc-bpf-debug #431 PREEMPT [ 308.987657] Tainted: [E]=UNSIGNED_MODULE [ 308.987661] Hardware name: IBM 3906 M04 704 (z/VM 7.3.0) [ 308.987666] Krnl PSW : 0404f00180000000 00000349976fa600 (expand+0x240/0x270) [ 308.987676] R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:3 PM:0 RI:0 EA:3 [ 308.987682] Krnl GPRS: 0000034980000004 0000000000000005 0000000000000030 000003499a0e6d88 [ 308.987688] 0000000000000005 0000034980000005 000002be803ac000 0000023efe6c8300 [ 308.987692] 0000000000000008 0000034998d57290 000002be00000100 0000023e00000008 [ 308.987696] 0000000000000000 0000000000000000 00000349976fa5fc 000002c99b1eb6f0 [ 308.987708] Krnl Code: 00000349976fa5f0: c020008a02f2 larl %r2,000003499883abd4 00000349976fa5f6: c0e5ffe3f4b5 brasl %r14,0000034997378f60 #00000349976fa5fc: af000000 mc 0,0 >00000349976fa600: a7f4ff4c brc 15,00000349976fa498 00000349976fa604: b9040026 lgr %r2,%r6 00000349976fa608: c0300088317f larl %r3,0000034998800906 00000349976fa60e: c0e5fffdb6e1 brasl %r14,00000349976b13d0 00000349976fa614: af000000 mc 0,0 [ 308.987734] Call Trace: [ 308.987738] [<00000349976fa600>] expand+0x240/0x270 [ 308.987744] ([<00000349976fa5fc>] expand+0x23c/0x270) [ 308.987749] [<00000349976ff95e>] rmqueue_bulk+0x71e/0x940 [ 308.987754] [<00000349976ffd7e>] __rmqueue_pcplist+0x1fe/0x2a0 [ 308.987759] [<0000034997700966>] rmqueue.isra.0+0xb46/0xf40 [ 308.987763] [<0000034997703ec8>] get_page_from_freelist+0x198/0x8d0 [ 308.987768] [<0000034997706fa8>] __alloc_frozen_pages_noprof+0x198/0x400 [ 308.987774] [<00000349977536f8>] alloc_pages_mpol+0xb8/0x220 [ 308.987781] [<0000034997753bf6>] folio_alloc_mpol_noprof+0x26/0xc0 [ 308.987786] [<0000034997753e4c>] vma_alloc_folio_noprof+0x6c/0xa0 [ 308.987791] [<0000034997775b22>] vma_alloc_anon_folio_pmd+0x42/0x240 [ 308.987799] [<000003499777bfea>] __do_huge_pmd_anonymous_page+0x3a/0x210 [ 308.987804] [<00000349976cb0 ---truncated---