| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The Best-wp-google-map plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'latitude' and 'longitudinal' parameters of the 'google_map_view' shortcode in all versions up to, and including, 2.1 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The ZoomifyWP Free plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'filename' parameter of the 'zoomify' shortcode in all versions up to, and including, 1.1 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The MailChimp Campaigns plugin for WordPress is vulnerable to Missing Authorization in all versions up to, and including, 3.2.4. This is due to missing capability checks on the `mailchimp_campaigns_manager_disconnect_app` function that is hooked to the AJAX action of the same name. This makes it possible for authenticated attackers, with Subscriber-level access and above, to disconnect the site from its MailChimp synchronization app, disrupting automated email campaigns and marketing integrations. |
| The WP Quick Contact Us plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0. This is due to missing nonce validation on the settings update functionality. This makes it possible for unauthenticated attackers to update the plugin's settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
| The QuestionPro Surveys plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'questionpro' shortcode in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Ravelry Designs Widget plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'layout' attribute of the 'sb_ravelry_designs' shortcode in all versions up to, and including, 1.0.0. This is due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Simple Wp colorfull Accordion plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'title' parameter in the 'accordion' shortcode in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The UpMenu – Online ordering for restaurants plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'lang' attribute of the 'upmenu-menu' shortcode in all versions up to, and including, 3.1. This is due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Scheduler Widget plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 0.1.6. This is due to the `scheduler_widget_ajax_save_event()` function lacking proper authorization checks and ownership verification when updating events. This makes it possible for authenticated attackers, with Subscriber-level access and above, to modify any event in the scheduler via the `id` parameter granted they have knowledge of the event ID. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/fpsimd: ptrace: Fix SVE writes on !SME systems
When SVE is supported but SME is not supported, a ptrace write to the
NT_ARM_SVE regset can place the tracee into an invalid state where
(non-streaming) SVE register data is stored in FP_STATE_SVE format but
TIF_SVE is clear. This can result in a later warning from
fpsimd_restore_current_state(), e.g.
WARNING: CPU: 0 PID: 7214 at arch/arm64/kernel/fpsimd.c:383 fpsimd_restore_current_state+0x50c/0x748
When this happens, fpsimd_restore_current_state() will set TIF_SVE,
placing the task into the correct state. This occurs before any other
check of TIF_SVE can possibly occur, as other checks of TIF_SVE only
happen while the FPSIMD/SVE/SME state is live. Thus, aside from the
warning, there is no functional issue.
This bug was introduced during rework to error handling in commit:
9f8bf718f2923 ("arm64/fpsimd: ptrace: Gracefully handle errors")
... where the setting of TIF_SVE was moved into a block which is only
executed when system_supports_sme() is true.
Fix this by removing the system_supports_sme() check. This ensures that
TIF_SVE is set for (SVE-formatted) writes to NT_ARM_SVE, at the cost of
unconditionally manipulating the tracee's saved svcr value. The
manipulation of svcr is benign and inexpensive, and we already do
similar elsewhere (e.g. during signal handling), so I don't think it's
worth guarding this with system_supports_sme() checks.
Aside from the above, there is no functional change. The 'type' argument
to sve_set_common() is only set to ARM64_VEC_SME (in ssve_set())) when
system_supports_sme(), so the ARM64_VEC_SME case in the switch statement
is still unreachable when !system_supports_sme(). When
CONFIG_ARM64_SME=n, the only caller of sve_set_common() is sve_set(),
and the compiler can constant-fold for the case where type is
ARM64_VEC_SVE, removing the logic for other cases. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: add missing ice_deinit_hw() in devlink reinit path
devlink-reload results in ice_init_hw failed error, and then removing
the ice driver causes a NULL pointer dereference.
[ +0.102213] ice 0000:ca:00.0: ice_init_hw failed: -16
...
[ +0.000001] Call Trace:
[ +0.000003] <TASK>
[ +0.000006] ice_unload+0x8f/0x100 [ice]
[ +0.000081] ice_remove+0xba/0x300 [ice]
Commit 1390b8b3d2be ("ice: remove duplicate call to ice_deinit_hw() on
error paths") removed ice_deinit_hw() from ice_deinit_dev(). As a result
ice_devlink_reinit_down() no longer calls ice_deinit_hw(), but
ice_devlink_reinit_up() still calls ice_init_hw(). Since the control
queues are not uninitialized, ice_init_hw() fails with -EBUSY.
Add ice_deinit_hw() to ice_devlink_reinit_down() to correspond with
ice_init_hw() in ice_devlink_reinit_up(). |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix data-race warning and potential load/store tearing
Fix the following:
BUG: KCSAN: data-race in rxrpc_peer_keepalive_worker / rxrpc_send_data_packet
which is reporting an issue with the reads and writes to ->last_tx_at in:
conn->peer->last_tx_at = ktime_get_seconds();
and:
keepalive_at = peer->last_tx_at + RXRPC_KEEPALIVE_TIME;
The lockless accesses to these to values aren't actually a problem as the
read only needs an approximate time of last transmission for the purposes
of deciding whether or not the transmission of a keepalive packet is
warranted yet.
Also, as ->last_tx_at is a 64-bit value, tearing can occur on a 32-bit
arch.
Fix both of these by switching to an unsigned int for ->last_tx_at and only
storing the LSW of the time64_t. It can then be reconstructed at need
provided no more than 68 years has elapsed since the last transmission. |
| In the Linux kernel, the following vulnerability has been resolved:
l2tp: avoid one data-race in l2tp_tunnel_del_work()
We should read sk->sk_socket only when dealing with kernel sockets.
syzbot reported the following data-race:
BUG: KCSAN: data-race in l2tp_tunnel_del_work / sk_common_release
write to 0xffff88811c182b20 of 8 bytes by task 5365 on cpu 0:
sk_set_socket include/net/sock.h:2092 [inline]
sock_orphan include/net/sock.h:2118 [inline]
sk_common_release+0xae/0x230 net/core/sock.c:4003
udp_lib_close+0x15/0x20 include/net/udp.h:325
inet_release+0xce/0xf0 net/ipv4/af_inet.c:437
__sock_release net/socket.c:662 [inline]
sock_close+0x6b/0x150 net/socket.c:1455
__fput+0x29b/0x650 fs/file_table.c:468
____fput+0x1c/0x30 fs/file_table.c:496
task_work_run+0x131/0x1a0 kernel/task_work.c:233
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
__exit_to_user_mode_loop kernel/entry/common.c:44 [inline]
exit_to_user_mode_loop+0x1fe/0x740 kernel/entry/common.c:75
__exit_to_user_mode_prepare include/linux/irq-entry-common.h:226 [inline]
syscall_exit_to_user_mode_prepare include/linux/irq-entry-common.h:256 [inline]
syscall_exit_to_user_mode_work include/linux/entry-common.h:159 [inline]
syscall_exit_to_user_mode include/linux/entry-common.h:194 [inline]
do_syscall_64+0x1e1/0x2b0 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x77/0x7f
read to 0xffff88811c182b20 of 8 bytes by task 827 on cpu 1:
l2tp_tunnel_del_work+0x2f/0x1a0 net/l2tp/l2tp_core.c:1418
process_one_work kernel/workqueue.c:3257 [inline]
process_scheduled_works+0x4ce/0x9d0 kernel/workqueue.c:3340
worker_thread+0x582/0x770 kernel/workqueue.c:3421
kthread+0x489/0x510 kernel/kthread.c:463
ret_from_fork+0x149/0x290 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246
value changed: 0xffff88811b818000 -> 0x0000000000000000 |
| In the Linux kernel, the following vulnerability has been resolved:
interconnect: debugfs: initialize src_node and dst_node to empty strings
The debugfs_create_str() API assumes that the string pointer is either NULL
or points to valid kmalloc() memory. Leaving the pointer uninitialized can
cause problems.
Initialize src_node and dst_node to empty strings before creating the
debugfs entries to guarantee that reads and writes are safe. |
| In the Linux kernel, the following vulnerability has been resolved:
perf: Fix refcount warning on event->mmap_count increment
When calling refcount_inc(&event->mmap_count) inside perf_mmap_rb(), the
following warning is triggered:
refcount_t: addition on 0; use-after-free.
WARNING: lib/refcount.c:25
PoC:
struct perf_event_attr attr = {0};
int fd = syscall(__NR_perf_event_open, &attr, 0, -1, -1, 0);
mmap(NULL, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
int victim = syscall(__NR_perf_event_open, &attr, 0, -1, fd,
PERF_FLAG_FD_OUTPUT);
mmap(NULL, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED, victim, 0);
This occurs when creating a group member event with the flag
PERF_FLAG_FD_OUTPUT. The group leader should be mmap-ed and then mmap-ing
the event triggers the warning.
Since the event has copied the output_event in perf_event_set_output(),
event->rb is set. As a result, perf_mmap_rb() calls
refcount_inc(&event->mmap_count) when event->mmap_count = 0.
Disallow the case when event->mmap_count = 0. This also prevents two
events from updating the same user_page. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix dead lock while flushing management frames
Commit [1] converted the management transmission work item into a
wiphy work. Since a wiphy work can only run under wiphy lock
protection, a race condition happens in below scenario:
1. a management frame is queued for transmission.
2. ath12k_mac_op_flush() gets called to flush pending frames associated
with the hardware (i.e, vif being NULL). Then in ath12k_mac_flush()
the process waits for the transmission done.
3. Since wiphy lock has been taken by the flush process, the transmission
work item has no chance to run, hence the dead lock.
>From user view, this dead lock results in below issue:
wlp8s0: authenticate with xxxxxx (local address=xxxxxx)
wlp8s0: send auth to xxxxxx (try 1/3)
wlp8s0: authenticate with xxxxxx (local address=xxxxxx)
wlp8s0: send auth to xxxxxx (try 1/3)
wlp8s0: authenticated
wlp8s0: associate with xxxxxx (try 1/3)
wlp8s0: aborting association with xxxxxx by local choice (Reason: 3=DEAUTH_LEAVING)
ath12k_pci 0000:08:00.0: failed to flush mgmt transmit queue, mgmt pkts pending 1
The dead lock can be avoided by invoking wiphy_work_flush() to proactively
run the queued work item. Note actually it is already present in
ath12k_mac_op_flush(), however it does not protect the case where vif
being NULL. Hence move it ahead to cover this case as well.
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.1.c5-00302-QCAHMTSWPL_V1.0_V2.0_SILICONZ-1.115823.3 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix dma_free_coherent() pointer
dma_alloc_coherent() allocates a DMA mapped buffer and stores the
addresses in XXX_unaligned fields. Those should be reused when freeing
the buffer rather than the aligned addresses. |
| In the Linux kernel, the following vulnerability has been resolved:
of: unittest: Fix memory leak in unittest_data_add()
In unittest_data_add(), if of_resolve_phandles() fails, the allocated
unittest_data is not freed, leading to a memory leak.
Fix this by using scope-based cleanup helper __free(kfree) for automatic
resource cleanup. This ensures unittest_data is automatically freed when
it goes out of scope in error paths.
For the success path, use retain_and_null_ptr() to transfer ownership
of the memory to the device tree and prevent double freeing. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, test_run: Subtract size of xdp_frame from allowed metadata size
The xdp_frame structure takes up part of the XDP frame headroom,
limiting the size of the metadata. However, in bpf_test_run, we don't
take this into account, which makes it possible for userspace to supply
a metadata size that is too large (taking up the entire headroom).
If userspace supplies such a large metadata size in live packet mode,
the xdp_update_frame_from_buff() call in xdp_test_run_init_page() call
will fail, after which packet transmission proceeds with an
uninitialised frame structure, leading to the usual Bad Stuff.
The commit in the Fixes tag fixed a related bug where the second check
in xdp_update_frame_from_buff() could fail, but did not add any
additional constraints on the metadata size. Complete the fix by adding
an additional check on the metadata size. Reorder the checks slightly to
make the logic clearer and add a comment. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: send: check for inline extents in range_is_hole_in_parent()
Before accessing the disk_bytenr field of a file extent item we need
to check if we are dealing with an inline extent.
This is because for inline extents their data starts at the offset of
the disk_bytenr field. So accessing the disk_bytenr
means we are accessing inline data or in case the inline data is less
than 8 bytes we can actually cause an invalid
memory access if this inline extent item is the first item in the leaf
or access metadata from other items. |