| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in the OpenJPEG project. A heap buffer overflow condition may be triggered when certain options are specified while using the opj_decompress utility. This can lead to an application crash or other undefined behavior. |
| A flaw was found in the OpenJPEG project. A heap buffer overflow condition may be triggered when certain options are specified while using the opj_decompress utility. This can lead to an application crash or other undefined behavior. |
| Serving WebSocket protocol upgrades over a HTTP/2 connection could result in a Null Pointer dereference, leading to a crash of the server process, degrading performance. |
| By manipulating the text in an `<input>` tag, an attacker could have caused corrupt memory leading to a potentially exploitable crash. This vulnerability affects Firefox < 127, Firefox ESR < 115.12, and Thunderbird < 115.12. |
| In the Linux kernel, the following vulnerability has been resolved:
rethook: fix a potential memleak in rethook_alloc()
In rethook_alloc(), the variable rh is not freed or passed out
if handler is NULL, which could lead to a memleak, fix it.
[Masami: Add "rethook:" tag to the title.]
Acke-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
| A flaw was found in rsync. This vulnerability arises from a race condition during rsync's handling of symbolic links. Rsync's default behavior when encountering symbolic links is to skip them. If an attacker replaced a regular file with a symbolic link at the right time, it was possible to bypass the default behavior and traverse symbolic links. Depending on the privileges of the rsync process, an attacker could leak sensitive information, potentially leading to privilege escalation. |
| A flaw was found in rsync. When using the `--safe-links` option, the rsync client fails to properly verify if a symbolic link destination sent from the server contains another symbolic link within it. This results in a path traversal vulnerability, which may lead to arbitrary file write outside the desired directory. |
| A flaw was found in rsync. It could allow a server to enumerate the contents of an arbitrary file from the client's machine. This issue occurs when files are being copied from a client to a server. During this process, the rsync server will send checksums of local data to the client to compare with in order to determine what data needs to be sent to the server. By sending specially constructed checksum values for arbitrary files, an attacker may be able to reconstruct the data of those files byte-by-byte based on the responses from the client. |
| A denial of service vulnerability was found in 389-ds-base ldap server. This issue may allow an authenticated user to cause a server crash while modifying `userPassword` using malformed input. |
| A flaw was found in FreeIPA. This issue may allow a remote attacker to craft a HTTP request with parameters that can be interpreted as command arguments to kinit on the FreeIPA server, which can lead to a denial of service. |
| An information disclosure flaw was found in ansible-core due to a failure to respect the ANSIBLE_NO_LOG configuration in some scenarios. Information is still included in the output in certain tasks, such as loop items. Depending on the task, this issue may include sensitive information, such as decrypted secret values. |
| A flaw was found in iperf, a utility for testing network performance using TCP, UDP, and SCTP. A malicious or malfunctioning client can send less than the expected amount of data to the iperf server, which can cause the server to hang indefinitely waiting for the remainder or until the connection gets closed. This will prevent other connections to the server, leading to a denial of service. |
| A stack based buffer overflow was found in the virtio-net device of QEMU. This issue occurs when flushing TX in the virtio_net_flush_tx function if guest features VIRTIO_NET_F_HASH_REPORT, VIRTIO_F_VERSION_1 and VIRTIO_NET_F_MRG_RXBUF are enabled. This could allow a malicious user to overwrite local variables allocated on the stack. Specifically, the `out_sg` variable could be used to read a part of process memory and send it to the wire, causing an information leak. |
| A vulnerability was found in systemd-resolved. This issue may allow systemd-resolved to accept records of DNSSEC-signed domains even when they have no signature, allowing man-in-the-middles (or the upstream DNS resolver) to manipulate records. |
| A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver, causing kernel panic and a denial of service. |
| A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver, causing kernel panic and a denial of service. |
| A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver and causing kernel panic and a denial of service. |
| A vulnerability was found in OpenSC where PKCS#1 encryption padding removal is not implemented as side-channel resistant. This issue may result in the potential leak of private data. |
| A vulnerability was found that the response times to malformed ciphertexts in RSA-PSK ClientKeyExchange differ from response times of ciphertexts with correct PKCS#1 v1.5 padding. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix UAF in decryption with multichannel
After commit f7025d861694 ("smb: client: allocate crypto only for
primary server") and commit b0abcd65ec54 ("smb: client: fix UAF in
async decryption"), the channels started reusing AEAD TFM from primary
channel to perform synchronous decryption, but that can't done as
there could be multiple cifsd threads (one per channel) simultaneously
accessing it to perform decryption.
This fixes the following KASAN splat when running fstest generic/249
with 'vers=3.1.1,multichannel,max_channels=4,seal' against Windows
Server 2022:
BUG: KASAN: slab-use-after-free in gf128mul_4k_lle+0xba/0x110
Read of size 8 at addr ffff8881046c18a0 by task cifsd/986
CPU: 3 UID: 0 PID: 986 Comm: cifsd Not tainted 6.15.0-rc1 #1
PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-3.fc41
04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x5d/0x80
print_report+0x156/0x528
? gf128mul_4k_lle+0xba/0x110
? __virt_addr_valid+0x145/0x300
? __phys_addr+0x46/0x90
? gf128mul_4k_lle+0xba/0x110
kasan_report+0xdf/0x1a0
? gf128mul_4k_lle+0xba/0x110
gf128mul_4k_lle+0xba/0x110
ghash_update+0x189/0x210
shash_ahash_update+0x295/0x370
? __pfx_shash_ahash_update+0x10/0x10
? __pfx_shash_ahash_update+0x10/0x10
? __pfx_extract_iter_to_sg+0x10/0x10
? ___kmalloc_large_node+0x10e/0x180
? __asan_memset+0x23/0x50
crypto_ahash_update+0x3c/0xc0
gcm_hash_assoc_remain_continue+0x93/0xc0
crypt_message+0xe09/0xec0 [cifs]
? __pfx_crypt_message+0x10/0x10 [cifs]
? _raw_spin_unlock+0x23/0x40
? __pfx_cifs_readv_from_socket+0x10/0x10 [cifs]
decrypt_raw_data+0x229/0x380 [cifs]
? __pfx_decrypt_raw_data+0x10/0x10 [cifs]
? __pfx_cifs_read_iter_from_socket+0x10/0x10 [cifs]
smb3_receive_transform+0x837/0xc80 [cifs]
? __pfx_smb3_receive_transform+0x10/0x10 [cifs]
? __pfx___might_resched+0x10/0x10
? __pfx_smb3_is_transform_hdr+0x10/0x10 [cifs]
cifs_demultiplex_thread+0x692/0x1570 [cifs]
? __pfx_cifs_demultiplex_thread+0x10/0x10 [cifs]
? rcu_is_watching+0x20/0x50
? rcu_lockdep_current_cpu_online+0x62/0xb0
? find_held_lock+0x32/0x90
? kvm_sched_clock_read+0x11/0x20
? local_clock_noinstr+0xd/0xd0
? trace_irq_enable.constprop.0+0xa8/0xe0
? __pfx_cifs_demultiplex_thread+0x10/0x10 [cifs]
kthread+0x1fe/0x380
? kthread+0x10f/0x380
? __pfx_kthread+0x10/0x10
? local_clock_noinstr+0xd/0xd0
? ret_from_fork+0x1b/0x60
? local_clock+0x15/0x30
? lock_release+0x29b/0x390
? rcu_is_watching+0x20/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x60
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK> |