CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
dax: Fix dax_mapping_release() use after free
A CONFIG_DEBUG_KOBJECT_RELEASE test of removing a device-dax region
provider (like modprobe -r dax_hmem) yields:
kobject: 'mapping0' (ffff93eb460e8800): kobject_release, parent 0000000000000000 (delayed 2000)
[..]
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 23 PID: 282 at kernel/locking/lockdep.c:232 __lock_acquire+0x9fc/0x2260
[..]
RIP: 0010:__lock_acquire+0x9fc/0x2260
[..]
Call Trace:
<TASK>
[..]
lock_acquire+0xd4/0x2c0
? ida_free+0x62/0x130
_raw_spin_lock_irqsave+0x47/0x70
? ida_free+0x62/0x130
ida_free+0x62/0x130
dax_mapping_release+0x1f/0x30
device_release+0x36/0x90
kobject_delayed_cleanup+0x46/0x150
Due to attempting ida_free() on an ida object that has already been
freed. Devices typically only hold a reference on their parent while
registered. If a child needs a parent object to complete its release it
needs to hold a reference that it drops from its release callback.
Arrange for a dax_mapping to pin its parent dev_dax instance until
dax_mapping_release(). |
In the Linux kernel, the following vulnerability has been resolved:
jfs: fix invalid free of JFS_IP(ipimap)->i_imap in diUnmount
syzbot found an invalid-free in diUnmount:
BUG: KASAN: double-free in slab_free mm/slub.c:3661 [inline]
BUG: KASAN: double-free in __kmem_cache_free+0x71/0x110 mm/slub.c:3674
Free of addr ffff88806f410000 by task syz-executor131/3632
CPU: 0 PID: 3632 Comm: syz-executor131 Not tainted 6.1.0-rc7-syzkaller-00012-gca57f02295f1 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
print_address_description+0x74/0x340 mm/kasan/report.c:284
print_report+0x107/0x1f0 mm/kasan/report.c:395
kasan_report_invalid_free+0xac/0xd0 mm/kasan/report.c:460
____kasan_slab_free+0xfb/0x120
kasan_slab_free include/linux/kasan.h:177 [inline]
slab_free_hook mm/slub.c:1724 [inline]
slab_free_freelist_hook+0x12e/0x1a0 mm/slub.c:1750
slab_free mm/slub.c:3661 [inline]
__kmem_cache_free+0x71/0x110 mm/slub.c:3674
diUnmount+0xef/0x100 fs/jfs/jfs_imap.c:195
jfs_umount+0x108/0x370 fs/jfs/jfs_umount.c:63
jfs_put_super+0x86/0x190 fs/jfs/super.c:194
generic_shutdown_super+0x130/0x310 fs/super.c:492
kill_block_super+0x79/0xd0 fs/super.c:1428
deactivate_locked_super+0xa7/0xf0 fs/super.c:332
cleanup_mnt+0x494/0x520 fs/namespace.c:1186
task_work_run+0x243/0x300 kernel/task_work.c:179
exit_task_work include/linux/task_work.h:38 [inline]
do_exit+0x664/0x2070 kernel/exit.c:820
do_group_exit+0x1fd/0x2b0 kernel/exit.c:950
__do_sys_exit_group kernel/exit.c:961 [inline]
__se_sys_exit_group kernel/exit.c:959 [inline]
__x64_sys_exit_group+0x3b/0x40 kernel/exit.c:959
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
JFS_IP(ipimap)->i_imap is not setting to NULL after free in diUnmount.
If jfs_remount() free JFS_IP(ipimap)->i_imap but then failed at diMount().
JFS_IP(ipimap)->i_imap will be freed once again.
Fix this problem by setting JFS_IP(ipimap)->i_imap to NULL after free. |
An API endpoint allows arbitrary log entries to be created via POST request. Without sufficient validation of the input data, an attacker can create manipulated log entries and thus falsify or dilute logs, for example. |
When an error occurs in the application a full stacktrace is provided to the user. The stacktrace lists class and method names as well as other internal information. An attacker can thus obtain information about the technology used and the structure of the application. |
If a user tries to login but the provided credentials are incorrect a log is created. The data for this POST requests is not validated and it’s possible to send giant payloads which are then logged. |
In the Linux kernel, the following vulnerability has been resolved:
drbd: only clone bio if we have a backing device
Commit c347a787e34cb (drbd: set ->bi_bdev in drbd_req_new) moved a
bio_set_dev call (which has since been removed) to "earlier", from
drbd_request_prepare to drbd_req_new.
The problem is that this accesses device->ldev->backing_bdev, which is
not NULL-checked at this point. When we don't have an ldev (i.e. when
the DRBD device is diskless), this leads to a null pointer deref.
So, only allocate the private_bio if we actually have a disk. This is
also a small optimization, since we don't clone the bio to only to
immediately free it again in the diskless case. |
In the Linux kernel, the following vulnerability has been resolved:
net: bcmgenet: Add a check for oversized packets
Occasionnaly we may get oversized packets from the hardware which
exceed the nomimal 2KiB buffer size we allocate SKBs with. Add an early
check which drops the packet to avoid invoking skb_over_panic() and move
on to processing the next packet. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix incomplete state save in rxe_requester
If a send packet is dropped by the IP layer in rxe_requester()
the call to rxe_xmit_packet() can fail with err == -EAGAIN.
To recover, the state of the wqe is restored to the state before
the packet was sent so it can be resent. However, the routines
that save and restore the state miss a significnt part of the
variable state in the wqe, the dma struct which is used to process
through the sge table. And, the state is not saved before the packet
is built which modifies the dma struct.
Under heavy stress testing with many QPs on a fast node sending
large messages to a slow node dropped packets are observed and
the resent packets are corrupted because the dma struct was not
restored. This patch fixes this behavior and allows the test cases
to succeed. |
In the Linux kernel, the following vulnerability has been resolved:
mm/damon/core: initialize damo_filter->list from damos_new_filter()
damos_new_filter() is not initializing the list field of newly allocated
filter object. However, DAMON sysfs interface and DAMON_RECLAIM are not
initializing it after calling damos_new_filter(). As a result, accessing
uninitialized memory is possible. Actually, adding multiple DAMOS filters
via DAMON sysfs interface caused NULL pointer dereferencing. Initialize
the field just after the allocation from damos_new_filter(). |
In the Linux kernel, the following vulnerability has been resolved:
rcu-tasks: Avoid pr_info() with spin lock in cblist_init_generic()
pr_info() is called with rtp->cbs_gbl_lock spin lock locked. Because
pr_info() calls printk() that might sleep, this will result in BUG
like below:
[ 0.206455] cblist_init_generic: Setting adjustable number of callback queues.
[ 0.206463]
[ 0.206464] =============================
[ 0.206464] [ BUG: Invalid wait context ]
[ 0.206465] 5.19.0-00428-g9de1f9c8ca51 #5 Not tainted
[ 0.206466] -----------------------------
[ 0.206466] swapper/0/1 is trying to lock:
[ 0.206467] ffffffffa0167a58 (&port_lock_key){....}-{3:3}, at: serial8250_console_write+0x327/0x4a0
[ 0.206473] other info that might help us debug this:
[ 0.206473] context-{5:5}
[ 0.206474] 3 locks held by swapper/0/1:
[ 0.206474] #0: ffffffff9eb597e0 (rcu_tasks.cbs_gbl_lock){....}-{2:2}, at: cblist_init_generic.constprop.0+0x14/0x1f0
[ 0.206478] #1: ffffffff9eb579c0 (console_lock){+.+.}-{0:0}, at: _printk+0x63/0x7e
[ 0.206482] #2: ffffffff9ea77780 (console_owner){....}-{0:0}, at: console_emit_next_record.constprop.0+0x111/0x330
[ 0.206485] stack backtrace:
[ 0.206486] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-00428-g9de1f9c8ca51 #5
[ 0.206488] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014
[ 0.206489] Call Trace:
[ 0.206490] <TASK>
[ 0.206491] dump_stack_lvl+0x6a/0x9f
[ 0.206493] __lock_acquire.cold+0x2d7/0x2fe
[ 0.206496] ? stack_trace_save+0x46/0x70
[ 0.206497] lock_acquire+0xd1/0x2f0
[ 0.206499] ? serial8250_console_write+0x327/0x4a0
[ 0.206500] ? __lock_acquire+0x5c7/0x2720
[ 0.206502] _raw_spin_lock_irqsave+0x3d/0x90
[ 0.206504] ? serial8250_console_write+0x327/0x4a0
[ 0.206506] serial8250_console_write+0x327/0x4a0
[ 0.206508] console_emit_next_record.constprop.0+0x180/0x330
[ 0.206511] console_unlock+0xf7/0x1f0
[ 0.206512] vprintk_emit+0xf7/0x330
[ 0.206514] _printk+0x63/0x7e
[ 0.206516] cblist_init_generic.constprop.0.cold+0x24/0x32
[ 0.206518] rcu_init_tasks_generic+0x5/0xd9
[ 0.206522] kernel_init_freeable+0x15b/0x2a2
[ 0.206523] ? rest_init+0x160/0x160
[ 0.206526] kernel_init+0x11/0x120
[ 0.206527] ret_from_fork+0x1f/0x30
[ 0.206530] </TASK>
[ 0.207018] cblist_init_generic: Setting shift to 1 and lim to 1.
This patch moves pr_info() so that it is called without
rtp->cbs_gbl_lock locked. |
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix defrag path triggering jbd2 ASSERT
code path:
ocfs2_ioctl_move_extents
ocfs2_move_extents
ocfs2_defrag_extent
__ocfs2_move_extent
+ ocfs2_journal_access_di
+ ocfs2_split_extent //sub-paths call jbd2_journal_restart
+ ocfs2_journal_dirty //crash by jbs2 ASSERT
crash stacks:
PID: 11297 TASK: ffff974a676dcd00 CPU: 67 COMMAND: "defragfs.ocfs2"
#0 [ffffb25d8dad3900] machine_kexec at ffffffff8386fe01
#1 [ffffb25d8dad3958] __crash_kexec at ffffffff8395959d
#2 [ffffb25d8dad3a20] crash_kexec at ffffffff8395a45d
#3 [ffffb25d8dad3a38] oops_end at ffffffff83836d3f
#4 [ffffb25d8dad3a58] do_trap at ffffffff83833205
#5 [ffffb25d8dad3aa0] do_invalid_op at ffffffff83833aa6
#6 [ffffb25d8dad3ac0] invalid_op at ffffffff84200d18
[exception RIP: jbd2_journal_dirty_metadata+0x2ba]
RIP: ffffffffc09ca54a RSP: ffffb25d8dad3b70 RFLAGS: 00010207
RAX: 0000000000000000 RBX: ffff9706eedc5248 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffff97337029ea28 RDI: ffff9706eedc5250
RBP: ffff9703c3520200 R8: 000000000f46b0b2 R9: 0000000000000000
R10: 0000000000000001 R11: 00000001000000fe R12: ffff97337029ea28
R13: 0000000000000000 R14: ffff9703de59bf60 R15: ffff9706eedc5250
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#7 [ffffb25d8dad3ba8] ocfs2_journal_dirty at ffffffffc137fb95 [ocfs2]
#8 [ffffb25d8dad3be8] __ocfs2_move_extent at ffffffffc139a950 [ocfs2]
#9 [ffffb25d8dad3c80] ocfs2_defrag_extent at ffffffffc139b2d2 [ocfs2]
Analysis
This bug has the same root cause of 'commit 7f27ec978b0e ("ocfs2: call
ocfs2_journal_access_di() before ocfs2_journal_dirty() in
ocfs2_write_end_nolock()")'. For this bug, jbd2_journal_restart() is
called by ocfs2_split_extent() during defragmenting.
How to fix
For ocfs2_split_extent() can handle journal operations totally by itself.
Caller doesn't need to call journal access/dirty pair, and caller only
needs to call journal start/stop pair. The fix method is to remove
journal access/dirty from __ocfs2_move_extent().
The discussion for this patch:
https://oss.oracle.com/pipermail/ocfs2-devel/2023-February/000647.html |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: delete timer and free skb queue when unloading
Fix possible crash and memory leak on driver unload by deleting
TX purge timer and freeing C2H queue in 'rtw_core_deinit()',
shrink critical section in the latter by freeing COEX queue
out of TX report lock scope. |
In the Linux kernel, the following vulnerability has been resolved:
bpf, cpumap: Make sure kthread is running before map update returns
The following warning was reported when running stress-mode enabled
xdp_redirect_cpu with some RT threads:
------------[ cut here ]------------
WARNING: CPU: 4 PID: 65 at kernel/bpf/cpumap.c:135
CPU: 4 PID: 65 Comm: kworker/4:1 Not tainted 6.5.0-rc2+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Workqueue: events cpu_map_kthread_stop
RIP: 0010:put_cpu_map_entry+0xda/0x220
......
Call Trace:
<TASK>
? show_regs+0x65/0x70
? __warn+0xa5/0x240
......
? put_cpu_map_entry+0xda/0x220
cpu_map_kthread_stop+0x41/0x60
process_one_work+0x6b0/0xb80
worker_thread+0x96/0x720
kthread+0x1a5/0x1f0
ret_from_fork+0x3a/0x70
ret_from_fork_asm+0x1b/0x30
</TASK>
The root cause is the same as commit 436901649731 ("bpf: cpumap: Fix memory
leak in cpu_map_update_elem"). The kthread is stopped prematurely by
kthread_stop() in cpu_map_kthread_stop(), and kthread() doesn't call
cpu_map_kthread_run() at all but XDP program has already queued some
frames or skbs into ptr_ring. So when __cpu_map_ring_cleanup() checks
the ptr_ring, it will find it was not emptied and report a warning.
An alternative fix is to use __cpu_map_ring_cleanup() to drop these
pending frames or skbs when kthread_stop() returns -EINTR, but it may
confuse the user, because these frames or skbs have been handled
correctly by XDP program. So instead of dropping these frames or skbs,
just make sure the per-cpu kthread is running before
__cpu_map_entry_alloc() returns.
After apply the fix, the error handle for kthread_stop() will be
unnecessary because it will always return 0, so just remove it. |
In the Linux kernel, the following vulnerability has been resolved:
mm/ksm: fix race with VMA iteration and mm_struct teardown
exit_mmap() will tear down the VMAs and maple tree with the mmap_lock held
in write mode. Ensure that the maple tree is still valid by checking
ksm_test_exit() after taking the mmap_lock in read mode, but before the
for_each_vma() iterator dereferences a destroyed maple tree.
Since the maple tree is destroyed, the flags telling lockdep to check an
external lock has been cleared. Skip the for_each_vma() iterator to avoid
dereferencing a maple tree without the external lock flag, which would
create a lockdep warning. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the cuobjdump binary where a user may cause an out-of-bounds read by passing a malformed ELF file to cuobjdump. A successful exploit of this vulnerability may lead to a partial denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvJPEG where a local authenticated user may cause a divide by zero error by submitting a specially crafted JPEG file. A successful exploit of this vulnerability may lead to denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvJPEG where a local authenticated user may cause a GPU out-of-bounds write by providing certain image dimensions. A successful exploit of this vulnerability may lead to denial of service and information disclosure. |
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvdisasm where an attacker may cause a heap-based buffer overflow by getting the user to run nvdisasm on a malicious ELF file. A successful exploit of this vulnerability may lead to arbitrary code execution at the privilege level of the user running nvdisasm. |