| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: replace BTRFS_MAX_EXTENT_SIZE with fs_info->max_extent_size
On zoned filesystem, data write out is limited by max_zone_append_size,
and a large ordered extent is split according the size of a bio. OTOH,
the number of extents to be written is calculated using
BTRFS_MAX_EXTENT_SIZE, and that estimated number is used to reserve the
metadata bytes to update and/or create the metadata items.
The metadata reservation is done at e.g, btrfs_buffered_write() and then
released according to the estimation changes. Thus, if the number of extent
increases massively, the reserved metadata can run out.
The increase of the number of extents easily occurs on zoned filesystem
if BTRFS_MAX_EXTENT_SIZE > max_zone_append_size. And, it causes the
following warning on a small RAM environment with disabling metadata
over-commit (in the following patch).
[75721.498492] ------------[ cut here ]------------
[75721.505624] BTRFS: block rsv 1 returned -28
[75721.512230] WARNING: CPU: 24 PID: 2327559 at fs/btrfs/block-rsv.c:537 btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.581854] CPU: 24 PID: 2327559 Comm: kworker/u64:10 Kdump: loaded Tainted: G W 5.18.0-rc2-BTRFS-ZNS+ #109
[75721.597200] Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021
[75721.607310] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
[75721.616209] RIP: 0010:btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.646649] RSP: 0018:ffffc9000fbdf3e0 EFLAGS: 00010286
[75721.654126] RAX: 0000000000000000 RBX: 0000000000004000 RCX: 0000000000000000
[75721.663524] RDX: 0000000000000004 RSI: 0000000000000008 RDI: fffff52001f7be6e
[75721.672921] RBP: ffffc9000fbdf420 R08: 0000000000000001 R09: ffff889f8d1fc6c7
[75721.682493] R10: ffffed13f1a3f8d8 R11: 0000000000000001 R12: ffff88980a3c0e28
[75721.692284] R13: ffff889b66590000 R14: ffff88980a3c0e40 R15: ffff88980a3c0e8a
[75721.701878] FS: 0000000000000000(0000) GS:ffff889f8d000000(0000) knlGS:0000000000000000
[75721.712601] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[75721.720726] CR2: 000055d12e05c018 CR3: 0000800193594000 CR4: 0000000000350ee0
[75721.730499] Call Trace:
[75721.735166] <TASK>
[75721.739886] btrfs_alloc_tree_block+0x1e1/0x1100 [btrfs]
[75721.747545] ? btrfs_alloc_logged_file_extent+0x550/0x550 [btrfs]
[75721.756145] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.762852] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.769520] ? push_leaf_left+0x420/0x620 [btrfs]
[75721.776431] ? memcpy+0x4e/0x60
[75721.781931] split_leaf+0x433/0x12d0 [btrfs]
[75721.788392] ? btrfs_get_token_32+0x580/0x580 [btrfs]
[75721.795636] ? push_for_double_split.isra.0+0x420/0x420 [btrfs]
[75721.803759] ? leaf_space_used+0x15d/0x1a0 [btrfs]
[75721.811156] btrfs_search_slot+0x1bc3/0x2790 [btrfs]
[75721.818300] ? lock_downgrade+0x7c0/0x7c0
[75721.824411] ? free_extent_buffer.part.0+0x107/0x200 [btrfs]
[75721.832456] ? split_leaf+0x12d0/0x12d0 [btrfs]
[75721.839149] ? free_extent_buffer.part.0+0x14f/0x200 [btrfs]
[75721.846945] ? free_extent_buffer+0x13/0x20 [btrfs]
[75721.853960] ? btrfs_release_path+0x4b/0x190 [btrfs]
[75721.861429] btrfs_csum_file_blocks+0x85c/0x1500 [btrfs]
[75721.869313] ? rcu_read_lock_sched_held+0x16/0x80
[75721.876085] ? lock_release+0x552/0xf80
[75721.881957] ? btrfs_del_csums+0x8c0/0x8c0 [btrfs]
[75721.888886] ? __kasan_check_write+0x14/0x20
[75721.895152] ? do_raw_read_unlock+0x44/0x80
[75721.901323] ? _raw_write_lock_irq+0x60/0x80
[75721.907983] ? btrfs_global_root+0xb9/0xe0 [btrfs]
[75721.915166] ? btrfs_csum_root+0x12b/0x180 [btrfs]
[75721.921918] ? btrfs_get_global_root+0x820/0x820 [btrfs]
[75721.929166] ? _raw_write_unlock+0x23/0x40
[75721.935116] ? unpin_extent_cache+0x1e3/0x390 [btrfs]
[75721.942041] btrfs_finish_ordered_io.isra.0+0xa0c/0x1dc0 [btrfs]
[75721.949906] ? try_to_wake_up+0x30/0x14a0
[75721.955700] ? btrfs_unlink_subvol+0xda0/0xda0 [btrfs]
[75721.962661] ? rcu
---truncated--- |
| Vasion Print (formerly PrinterLogic) Virtual Appliance Host versions prior to 22.0.1002 and Application versions prior to 20.0.2614 (VA and SaaS deployments) contain multiple Docker containers that include outdated, end-of-life, unsupported, or otherwise vulnerable third-party components (examples: Nginx 1.17.x, OpenSSL 1.1.1d, various EOL Alpine/Debian/Ubuntu base images, and EOL Laravel/PHP libraries). These components are present across many container images and increase the product's attack surface, enabling exploitation chains when leveraged by an attacker. Multiple distinct EOL versions and unpatched libraries across containers; Nginx binaries date from 2019 in several images and Laravel versions observed include EOL releases (for example Laravel 5.5.x, 5.7.x, 5.8.x). This vulnerability has been identified by the vendor as: V-2024-014 — Outdated Dependencies. |
| Unspecified vulnerability in Adobe Flash Player through 13.0.0.262 and 14.x, 15.x, and 16.x through 16.0.0.287 on Windows and OS X and through 11.2.202.438 on Linux allows remote attackers to execute arbitrary code via unknown vectors, as exploited in the wild in January 2015. |
| Unspecified vulnerability in Adobe Flash Player 21.0.0.242 and earlier allows remote attackers to execute arbitrary code via unknown vectors, as exploited in the wild in June 2016. |
| Adobe Flash Player 21.0.0.226 and earlier allows remote attackers to execute arbitrary code via unspecified vectors, as exploited in the wild in May 2016. |
| Adobe Flash Player 21.0.0.197 and earlier allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via unspecified vectors, as exploited in the wild in April 2016. |
| Adobe Flash Player before 13.0.0.262 and 14.x through 16.x before 16.0.0.287 on Windows and OS X and before 11.2.202.438 on Linux does not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism on Windows, and have an unspecified impact on other platforms, via unknown vectors, as exploited in the wild in January 2015. |
| Frappe Learning is a learning system that helps users structure their content. Starting in version 2.0.0 and prior to version 2.41.0, users were able to access the submissions made by other students The issue has been fixed in version 2.41.0 by ensuring proper roles and redirecting if accessed via direct URL. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: do not queue data on closed subflows
Dipanjan reported a syzbot splat at close time:
WARNING: CPU: 1 PID: 10818 at net/ipv4/af_inet.c:153
inet_sock_destruct+0x6d0/0x8e0 net/ipv4/af_inet.c:153
Modules linked in: uio_ivshmem(OE) uio(E)
CPU: 1 PID: 10818 Comm: kworker/1:16 Tainted: G OE
5.19.0-rc6-g2eae0556bb9d #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Workqueue: events mptcp_worker
RIP: 0010:inet_sock_destruct+0x6d0/0x8e0 net/ipv4/af_inet.c:153
Code: 21 02 00 00 41 8b 9c 24 28 02 00 00 e9 07 ff ff ff e8 34 4d 91
f9 89 ee 4c 89 e7 e8 4a 47 60 ff e9 a6 fc ff ff e8 20 4d 91 f9 <0f> 0b
e9 84 fe ff ff e8 14 4d 91 f9 0f 0b e9 d4 fd ff ff e8 08 4d
RSP: 0018:ffffc9001b35fa78 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 00000000002879d0 RCX: ffff8881326f3b00
RDX: 0000000000000000 RSI: ffff8881326f3b00 RDI: 0000000000000002
RBP: ffff888179662674 R08: ffffffff87e983a0 R09: 0000000000000000
R10: 0000000000000005 R11: 00000000000004ea R12: ffff888179662400
R13: ffff888179662428 R14: 0000000000000001 R15: ffff88817e38e258
FS: 0000000000000000(0000) GS:ffff8881f5f00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020007bc0 CR3: 0000000179592000 CR4: 0000000000150ee0
Call Trace:
<TASK>
__sk_destruct+0x4f/0x8e0 net/core/sock.c:2067
sk_destruct+0xbd/0xe0 net/core/sock.c:2112
__sk_free+0xef/0x3d0 net/core/sock.c:2123
sk_free+0x78/0xa0 net/core/sock.c:2134
sock_put include/net/sock.h:1927 [inline]
__mptcp_close_ssk+0x50f/0x780 net/mptcp/protocol.c:2351
__mptcp_destroy_sock+0x332/0x760 net/mptcp/protocol.c:2828
mptcp_worker+0x5d2/0xc90 net/mptcp/protocol.c:2586
process_one_work+0x9cc/0x1650 kernel/workqueue.c:2289
worker_thread+0x623/0x1070 kernel/workqueue.c:2436
kthread+0x2e9/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:302
</TASK>
The root cause of the problem is that an mptcp-level (re)transmit can
race with mptcp_close() and the packet scheduler checks the subflow
state before acquiring the socket lock: we can try to (re)transmit on
an already closed ssk.
Fix the issue checking again the subflow socket status under the
subflow socket lock protection. Additionally add the missing check
for the fallback-to-tcp case. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: move subflow cleanup in mptcp_destroy_common()
If the mptcp socket creation fails due to a CGROUP_INET_SOCK_CREATE
eBPF program, the MPTCP protocol ends-up leaking all the subflows:
the related cleanup happens in __mptcp_destroy_sock() that is not
invoked in such code path.
Address the issue moving the subflow sockets cleanup in the
mptcp_destroy_common() helper, which is invoked in every msk cleanup
path.
Additionally get rid of the intermediate list_splice_init step, which
is an unneeded relic from the past.
The issue is present since before the reported root cause commit, but
any attempt to backport the fix before that hash will require a complete
rewrite. |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/qcom-mpm: Prevent crash when trying to handle non-wake GPIOs
On Qualcomm chipsets not all GPIOs are wakeup capable. Those GPIOs do not
have a corresponding MPM pin and should not be handled inside the MPM
driver. The IRQ domain hierarchy is always applied, so it's required to
explicitly disconnect the hierarchy for those. The pinctrl-msm driver marks
these with GPIO_NO_WAKE_IRQ. qcom-pdc has a check for this, but
irq-qcom-mpm is currently missing the check. This is causing crashes when
setting up interrupts for non-wake GPIOs:
root@rb1:~# gpiomon -c gpiochip1 10
irq: IRQ159: trimming hierarchy from :soc@0:interrupt-controller@f200000-1
Unable to handle kernel paging request at virtual address ffff8000a1dc3820
Hardware name: Qualcomm Technologies, Inc. Robotics RB1 (DT)
pc : mpm_set_type+0x80/0xcc
lr : mpm_set_type+0x5c/0xcc
Call trace:
mpm_set_type+0x80/0xcc (P)
qcom_mpm_set_type+0x64/0x158
irq_chip_set_type_parent+0x20/0x38
msm_gpio_irq_set_type+0x50/0x530
__irq_set_trigger+0x60/0x184
__setup_irq+0x304/0x6bc
request_threaded_irq+0xc8/0x19c
edge_detector_setup+0x260/0x364
linereq_create+0x420/0x5a8
gpio_ioctl+0x2d4/0x6c0
Fix this by copying the check for GPIO_NO_WAKE_IRQ from qcom-pdc.c, so that
MPM is removed entirely from the hierarchy for non-wake GPIOs. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: ops: Consistently treat platform_max as control value
This reverts commit 9bdd10d57a88 ("ASoC: ops: Shift tested values in
snd_soc_put_volsw() by +min"), and makes some additional related
updates.
There are two ways the platform_max could be interpreted; the maximum
register value, or the maximum value the control can be set to. The
patch moved from treating the value as a control value to a register
one. When the patch was applied it was technically correct as
snd_soc_limit_volume() also used the register interpretation. However,
even then most of the other usages treated platform_max as a
control value, and snd_soc_limit_volume() has since been updated to
also do so in commit fb9ad24485087 ("ASoC: ops: add correct range
check for limiting volume"). That patch however, missed updating
snd_soc_put_volsw() back to the control interpretation, and fixing
snd_soc_info_volsw_range(). The control interpretation makes more
sense as limiting is typically done from the machine driver, so it is
appropriate to use the customer facing representation rather than the
internal codec representation. Update all the code to consistently use
this interpretation of platform_max.
Finally, also add some comments to the soc_mixer_control struct to
hopefully avoid further patches switching between the two approaches. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: mtk-star-emac: fix spinlock recursion issues on rx/tx poll
Use spin_lock_irqsave and spin_unlock_irqrestore instead of spin_lock
and spin_unlock in mtk_star_emac driver to avoid spinlock recursion
occurrence that can happen when enabling the DMA interrupts again in
rx/tx poll.
```
BUG: spinlock recursion on CPU#0, swapper/0/0
lock: 0xffff00000db9cf20, .magic: dead4ead, .owner: swapper/0/0,
.owner_cpu: 0
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted
6.15.0-rc2-next-20250417-00001-gf6a27738686c-dirty #28 PREEMPT
Hardware name: MediaTek MT8365 Open Platform EVK (DT)
Call trace:
show_stack+0x18/0x24 (C)
dump_stack_lvl+0x60/0x80
dump_stack+0x18/0x24
spin_dump+0x78/0x88
do_raw_spin_lock+0x11c/0x120
_raw_spin_lock+0x20/0x2c
mtk_star_handle_irq+0xc0/0x22c [mtk_star_emac]
__handle_irq_event_percpu+0x48/0x140
handle_irq_event+0x4c/0xb0
handle_fasteoi_irq+0xa0/0x1bc
handle_irq_desc+0x34/0x58
generic_handle_domain_irq+0x1c/0x28
gic_handle_irq+0x4c/0x120
do_interrupt_handler+0x50/0x84
el1_interrupt+0x34/0x68
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x6c/0x70
regmap_mmio_read32le+0xc/0x20 (P)
_regmap_bus_reg_read+0x6c/0xac
_regmap_read+0x60/0xdc
regmap_read+0x4c/0x80
mtk_star_rx_poll+0x2f4/0x39c [mtk_star_emac]
__napi_poll+0x38/0x188
net_rx_action+0x164/0x2c0
handle_softirqs+0x100/0x244
__do_softirq+0x14/0x20
____do_softirq+0x10/0x20
call_on_irq_stack+0x24/0x64
do_softirq_own_stack+0x1c/0x40
__irq_exit_rcu+0xd4/0x10c
irq_exit_rcu+0x10/0x1c
el1_interrupt+0x38/0x68
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x6c/0x70
cpuidle_enter_state+0xac/0x320 (P)
cpuidle_enter+0x38/0x50
do_idle+0x1e4/0x260
cpu_startup_entry+0x34/0x3c
rest_init+0xdc/0xe0
console_on_rootfs+0x0/0x6c
__primary_switched+0x88/0x90
``` |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: simple-card-utils: Fix pointer check in graph_util_parse_link_direction
Actually check if the passed pointers are valid, before writing to them.
This also fixes a USBAN warning:
UBSAN: invalid-load in ../sound/soc/fsl/imx-card.c:687:25
load of value 255 is not a valid value for type '_Bool'
This is because playback_only is uninitialized and is not written to, as
the playback-only property is absent. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: mtk_eth_soc: fix SER panic with 4GB+ RAM
If the mtk_poll_rx() function detects the MTK_RESETTING flag, it will
jump to release_desc and refill the high word of the SDP on the 4GB RFB.
Subsequently, mtk_rx_clean will process an incorrect SDP, leading to a
panic.
Add patch from MediaTek's SDK to resolve this. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix io_req_prep_async with provided buffers
io_req_prep_async() can import provided buffers, commit the ring state
by giving up on that before, it'll be reimported later if needed. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: fsl-qspi: use devm function instead of driver remove
Driver use devm APIs to manage clk/irq/resources and register the spi
controller, but the legacy remove function will be called first during
device detach and trigger kernel panic. Drop the remove function and use
devm_add_action_or_reset() for driver cleanup to ensure the release
sequence.
Trigger kernel panic on i.MX8MQ by
echo 30bb0000.spi >/sys/bus/platform/drivers/fsl-quadspi/unbind |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Increase block_sequence array size
[Why]
It's possible to generate more than 50 steps in hwss_build_fast_sequence,
for example with a 6-pipe asic where all pipes are in one MPC chain. This
overflows the block_sequence buffer and corrupts block_sequence_steps,
causing a crash.
[How]
Expand block_sequence to 100 items. A naive upper bound on the possible
number of steps for a 6-pipe asic, ignoring the potential for steps to be
mutually exclusive, is 91 with current code, therefore 100 is sufficient. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/tegra241-cmdqv: Fix warnings due to dmam_free_coherent()
Two WARNINGs are observed when SMMU driver rolls back upon failure:
arm-smmu-v3.9.auto: Failed to register iommu
arm-smmu-v3.9.auto: probe with driver arm-smmu-v3 failed with error -22
------------[ cut here ]------------
WARNING: CPU: 5 PID: 1 at kernel/dma/mapping.c:74 dmam_free_coherent+0xc0/0xd8
Call trace:
dmam_free_coherent+0xc0/0xd8 (P)
tegra241_vintf_free_lvcmdq+0x74/0x188
tegra241_cmdqv_remove_vintf+0x60/0x148
tegra241_cmdqv_remove+0x48/0xc8
arm_smmu_impl_remove+0x28/0x60
devm_action_release+0x1c/0x40
------------[ cut here ]------------
128 pages are still in use!
WARNING: CPU: 16 PID: 1 at mm/page_alloc.c:6902 free_contig_range+0x18c/0x1c8
Call trace:
free_contig_range+0x18c/0x1c8 (P)
cma_release+0x154/0x2f0
dma_free_contiguous+0x38/0xa0
dma_direct_free+0x10c/0x248
dma_free_attrs+0x100/0x290
dmam_free_coherent+0x78/0xd8
tegra241_vintf_free_lvcmdq+0x74/0x160
tegra241_cmdqv_remove+0x98/0x198
arm_smmu_impl_remove+0x28/0x60
devm_action_release+0x1c/0x40
This is because the LVCMDQ queue memory are managed by devres, while that
dmam_free_coherent() is called in the context of devm_action_release().
Jason pointed out that "arm_smmu_impl_probe() has mis-ordered the devres
callbacks if ops->device_remove() is going to be manually freeing things
that probe allocated":
https://lore.kernel.org/linux-iommu/20250407174408.GB1722458@nvidia.com/
In fact, tegra241_cmdqv_init_structures() only allocates memory resources
which means any failure that it generates would be similar to -ENOMEM, so
there is no point in having that "falling back to standard SMMU" routine,
as the standard SMMU would likely fail to allocate memory too.
Remove the unwind part in tegra241_cmdqv_init_structures(), and return a
proper error code to ask SMMU driver to call tegra241_cmdqv_remove() via
impl_ops->device_remove(). Then, drop tegra241_vintf_free_lvcmdq() since
devres will take care of that. |
| In the Linux kernel, the following vulnerability has been resolved:
jbd2: remove wrong sb->s_sequence check
Journal emptiness is not determined by sb->s_sequence == 0 but rather by
sb->s_start == 0 (which is set a few lines above). Furthermore 0 is a
valid transaction ID so the check can spuriously trigger. Remove the
invalid WARN_ON. |