Search

Search Results (327883 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71082 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: revert use of devm_kzalloc in btusb This reverts commit 98921dbd00c4e ("Bluetooth: Use devm_kzalloc in btusb.c file"). In btusb_probe(), we use devm_kzalloc() to allocate the btusb data. This ties the lifetime of all the btusb data to the binding of a driver to one interface, INTF. In a driver that binds to other interfaces, ISOC and DIAG, this is an accident waiting to happen. The issue is revealed in btusb_disconnect(), where calling usb_driver_release_interface(&btusb_driver, data->intf) will have devm free the data that is also being used by the other interfaces of the driver that may not be released yet. To fix this, revert the use of devm and go back to freeing memory explicitly.
CVE-2025-71099 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Fix potential UAF in xe_oa_add_config_ioctl() In xe_oa_add_config_ioctl(), we accessed oa_config->id after dropping metrics_lock. Since this lock protects the lifetime of oa_config, an attacker could guess the id and call xe_oa_remove_config_ioctl() with perfect timing, freeing oa_config before we dereference it, leading to a potential use-after-free. Fix this by caching the id in a local variable while holding the lock. v2: (Matt A) - Dropped mutex_unlock(&oa->metrics_lock) ordering change from xe_oa_remove_config_ioctl() (cherry picked from commit 28aeaed130e8e587fd1b73b6d66ca41ccc5a1a31)
CVE-2025-9435 1 Zohocorp 1 Manageengine Admanager Plus 2026-01-14 5.5 Medium
Zohocorp ManageEngine ADManager Plus versions below 7230 are vulnerable to Path Traversal in the User Management module
CVE-2026-22755 1 Vivotek 37 Fd8365, Fd8365v2, Fd9165 and 34 more 2026-01-14 N/A
Improper Neutralization of Special Elements used in a Command ('Command Injection') vulnerability in Vivotek Affected device model numbers are FD8365, FD8365v2, FD9165, FD9171, FD9187, FD9189, FD9365, FD9371, FD9381, FD9387, FD9389, FD9391,FE9180,FE9181, FE9191, FE9381, FE9382, FE9391, FE9582, IB9365, IB93587LPR, IB9371,IB9381, IB9387, IB9389, IB939,IP9165,IP9171, IP9172, IP9181, IP9191, IT9389, MA9321, MA9322, MS9321, MS9390, TB9330 (Firmware modules) allows OS Command Injection.This issue affects Affected device model numbers are FD8365, FD8365v2, FD9165, FD9171, FD9187, FD9189, FD9365, FD9371, FD9381, FD9387, FD9389, FD9391,FE9180,FE9181, FE9191, FE9381, FE9382, FE9391, FE9582, IB9365, IB93587LPR, IB9371,IB9381, IB9387, IB9389, IB939,IP9165,IP9171, IP9172, IP9181, IP9191, IT9389, MA9321, MA9322, MS9321, MS9390, TB9330: 0100a, 0106a, 0106b, 0107a, 0107b_1, 0109a, 0112a, 0113a, 0113d, 0117b, 0119e, 0120b, 0121, 0121d, 0121d_48573_1, 0122e, 0124d_48573_1, 012501, 012502, 0125c.
CVE-2025-69991 1 Phpgurukul 1 News Portal Project 2026-01-14 9.8 Critical
phpgurukul News Portal Project V4.1 is vulnerable to SQL Injection in check_availablity.php.
CVE-2025-69992 1 Phpgurukul 1 News Portal Project 2026-01-14 9.8 Critical
phpgurukul News Portal Project V4.1 has File Upload Vulnerability via upload.php, which enables the upload of files of any format to the server without identity authentication.
CVE-2025-11250 1 Zohocorp 1 Manageengine Adselfservice Plus 2026-01-14 9.1 Critical
Zohocorp ManageEngine ADSelfService Plus versions before 6519 are vulnerable to Authentication Bypass due to improper filter configurations.
CVE-2025-12548 1 Redhat 1 Openshift Devspaces 2026-01-14 9 Critical
A flaw was found in Eclipse Che che-machine-exec. This vulnerability allows unauthenticated remote arbitrary command execution and secret exfiltration (SSH keys, tokens, etc.) from other users' Developer Workspace containers, via an unauthenticated JSON-RPC / websocket API exposed on TCP port 3333.
CVE-2025-13444 1 Progress 2 Loadmaster, Multi-tenant Loadmaster 2026-01-14 8.4 High
OS Command Injection Remote Code Execution Vulnerability in API in Progress LoadMaster allows an authenticated attacker with “User Administration” permissions to execute arbitrary commands on the LoadMaster appliance by exploiting unsanitized input in the API input parameters
CVE-2025-13447 1 Progress 1 Loadmaster 2026-01-14 8.4 High
OS Command Injection Remote Code Execution Vulnerability in API in Progress LoadMaster allows an authenticated attacker with “User Administration” permissions to execute arbitrary commands on the LoadMaster appliance by exploiting unsanitized input in the API input parameters
CVE-2025-14507 2 Metagauss, Wordpress 2 Eventprime, Wordpress 2026-01-14 5.3 Medium
The EventPrime - Events Calendar, Bookings and Tickets plugin for WordPress is vulnerable to Sensitive Information Exposure in all versions up to, and including, 4.2.7.0 via the REST API. This makes it possible for unauthenticated attackers to extract sensitive booking data including user names, email addresses, ticket details, payment information, and order keys when the API is enabled by an administrator. The vulnerability was partially patched in version 4.2.7.0.
CVE-2025-36640 2 Microsoft, Tenable 2 Windows, Nessus Agent 2026-01-14 8.8 High
A vulnerability has been identified in the installation/uninstallation of the Nessus Agent Tray App on Windows Hosts which could lead to escalation of privileges.
CVE-2025-68802 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Limit num_syncs to prevent oversized allocations The exec and vm_bind ioctl allow userspace to specify an arbitrary num_syncs value. Without bounds checking, a very large num_syncs can force an excessively large allocation, leading to kernel warnings from the page allocator as below. Introduce DRM_XE_MAX_SYNCS (set to 1024) and reject any request exceeding this limit. " ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1217 at mm/page_alloc.c:5124 __alloc_frozen_pages_noprof+0x2f8/0x2180 mm/page_alloc.c:5124 ... Call Trace: <TASK> alloc_pages_mpol+0xe4/0x330 mm/mempolicy.c:2416 ___kmalloc_large_node+0xd8/0x110 mm/slub.c:4317 __kmalloc_large_node_noprof+0x18/0xe0 mm/slub.c:4348 __do_kmalloc_node mm/slub.c:4364 [inline] __kmalloc_noprof+0x3d4/0x4b0 mm/slub.c:4388 kmalloc_noprof include/linux/slab.h:909 [inline] kmalloc_array_noprof include/linux/slab.h:948 [inline] xe_exec_ioctl+0xa47/0x1e70 drivers/gpu/drm/xe/xe_exec.c:158 drm_ioctl_kernel+0x1f1/0x3e0 drivers/gpu/drm/drm_ioctl.c:797 drm_ioctl+0x5e7/0xc50 drivers/gpu/drm/drm_ioctl.c:894 xe_drm_ioctl+0x10b/0x170 drivers/gpu/drm/xe/xe_device.c:224 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:598 [inline] __se_sys_ioctl fs/ioctl.c:584 [inline] __x64_sys_ioctl+0x18b/0x210 fs/ioctl.c:584 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xbb/0x380 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f ... " v2: Add "Reported-by" and Cc stable kernels. v3: Change XE_MAX_SYNCS from 64 to 1024. (Matt & Ashutosh) v4: s/XE_MAX_SYNCS/DRM_XE_MAX_SYNCS/ (Matt) v5: Do the check at the top of the exec func. (Matt) (cherry picked from commit b07bac9bd708ec468cd1b8a5fe70ae2ac9b0a11c)
CVE-2025-68804 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/chrome: cros_ec_ishtp: Fix UAF after unbinding driver After unbinding the driver, another kthread `cros_ec_console_log_work` is still accessing the device, resulting an UAF and crash. The driver doesn't unregister the EC device in .remove() which should shutdown sub-devices synchronously. Fix it.
CVE-2025-68810 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: KVM: Disallow toggling KVM_MEM_GUEST_MEMFD on an existing memslot Reject attempts to disable KVM_MEM_GUEST_MEMFD on a memslot that was initially created with a guest_memfd binding, as KVM doesn't support toggling KVM_MEM_GUEST_MEMFD on existing memslots. KVM prevents enabling KVM_MEM_GUEST_MEMFD, but doesn't prevent clearing the flag. Failure to reject the new memslot results in a use-after-free due to KVM not unbinding from the guest_memfd instance. Unbinding on a FLAGS_ONLY change is easy enough, and can/will be done as a hardening measure (in anticipation of KVM supporting dirty logging on guest_memfd at some point), but fixing the use-after-free would only address the immediate symptom. ================================================================== BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x362/0x400 [kvm] Write of size 8 at addr ffff8881111ae908 by task repro/745 CPU: 7 UID: 1000 PID: 745 Comm: repro Not tainted 6.18.0-rc6-115d5de2eef3-next-kasan #3 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: <TASK> dump_stack_lvl+0x51/0x60 print_report+0xcb/0x5c0 kasan_report+0xb4/0xe0 kvm_gmem_release+0x362/0x400 [kvm] __fput+0x2fa/0x9d0 task_work_run+0x12c/0x200 do_exit+0x6ae/0x2100 do_group_exit+0xa8/0x230 __x64_sys_exit_group+0x3a/0x50 x64_sys_call+0x737/0x740 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f581f2eac31 </TASK> Allocated by task 745 on cpu 6 at 9.746971s: kasan_save_stack+0x20/0x40 kasan_save_track+0x13/0x50 __kasan_kmalloc+0x77/0x90 kvm_set_memory_region.part.0+0x652/0x1110 [kvm] kvm_vm_ioctl+0x14b0/0x3290 [kvm] __x64_sys_ioctl+0x129/0x1a0 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Freed by task 745 on cpu 6 at 9.747467s: kasan_save_stack+0x20/0x40 kasan_save_track+0x13/0x50 __kasan_save_free_info+0x37/0x50 __kasan_slab_free+0x3b/0x60 kfree+0xf5/0x440 kvm_set_memslot+0x3c2/0x1160 [kvm] kvm_set_memory_region.part.0+0x86a/0x1110 [kvm] kvm_vm_ioctl+0x14b0/0x3290 [kvm] __x64_sys_ioctl+0x129/0x1a0 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53
CVE-2025-68816 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: fw_tracer, Validate format string parameters Add validation for format string parameters in the firmware tracer to prevent potential security vulnerabilities and crashes from malformed format strings received from firmware. The firmware tracer receives format strings from the device firmware and uses them to format trace messages. Without proper validation, bad firmware could provide format strings with invalid format specifiers (e.g., %s, %p, %n) that could lead to crashes, or other undefined behavior. Add mlx5_tracer_validate_params() to validate that all format specifiers in trace strings are limited to safe integer/hex formats (%x, %d, %i, %u, %llx, %lx, etc.). Reject strings containing other format types that could be used to access arbitrary memory or cause crashes. Invalid format strings are added to the trace output for visibility with "BAD_FORMAT: " prefix.
CVE-2025-68821 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: fuse: fix readahead reclaim deadlock Commit e26ee4efbc79 ("fuse: allocate ff->release_args only if release is needed") skips allocating ff->release_args if the server does not implement open. However in doing so, fuse_prepare_release() now skips grabbing the reference on the inode, which makes it possible for an inode to be evicted from the dcache while there are inflight readahead requests. This causes a deadlock if the server triggers reclaim while servicing the readahead request and reclaim attempts to evict the inode of the file being read ahead. Since the folio is locked during readahead, when reclaim evicts the fuse inode and fuse_evict_inode() attempts to remove all folios associated with the inode from the page cache (truncate_inode_pages_range()), reclaim will block forever waiting for the lock since readahead cannot relinquish the lock because it is itself blocked in reclaim: >>> stack_trace(1504735) folio_wait_bit_common (mm/filemap.c:1308:4) folio_lock (./include/linux/pagemap.h:1052:3) truncate_inode_pages_range (mm/truncate.c:336:10) fuse_evict_inode (fs/fuse/inode.c:161:2) evict (fs/inode.c:704:3) dentry_unlink_inode (fs/dcache.c:412:3) __dentry_kill (fs/dcache.c:615:3) shrink_kill (fs/dcache.c:1060:12) shrink_dentry_list (fs/dcache.c:1087:3) prune_dcache_sb (fs/dcache.c:1168:2) super_cache_scan (fs/super.c:221:10) do_shrink_slab (mm/shrinker.c:435:9) shrink_slab (mm/shrinker.c:626:10) shrink_node (mm/vmscan.c:5951:2) shrink_zones (mm/vmscan.c:6195:3) do_try_to_free_pages (mm/vmscan.c:6257:3) do_swap_page (mm/memory.c:4136:11) handle_pte_fault (mm/memory.c:5562:10) handle_mm_fault (mm/memory.c:5870:9) do_user_addr_fault (arch/x86/mm/fault.c:1338:10) handle_page_fault (arch/x86/mm/fault.c:1481:3) exc_page_fault (arch/x86/mm/fault.c:1539:2) asm_exc_page_fault+0x22/0x27 Fix this deadlock by allocating ff->release_args and grabbing the reference on the inode when preparing the file for release even if the server does not implement open. The inode reference will be dropped when the last reference on the fuse file is dropped (see fuse_file_put() -> fuse_release_end()).
CVE-2025-65784 1 Hubert 1 Hub 2026-01-14 6.5 Medium
Insecure permissions in Hubert Imoveis e Administracao Ltda Hub v2.0 1.27.3 allows authenticated attackers with low-level privileges to access other users' information via a crafted API request.
CVE-2025-58409 1 Imaginationtech 1 Graphics Ddk 2026-01-14 3.5 Low
Software installed and run as a non-privileged user may conduct improper GPU system calls to subvert GPU HW to write to arbitrary physical memory pages. Under certain circumstances this exploit could be used to corrupt data pages not allocated by the GPU driver but memory pages in use by the kernel and drivers running on the platform altering their behaviour. This attack can lead the GPU to perform write operations on restricted internal GPU buffers that can lead to a second order affect of corrupted arbitrary physical memory.
CVE-2025-37171 1 Hpe 1 Arubaos 2026-01-14 7.2 High
Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system.