| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Parse Server is an open source backend that can be deployed to any infrastructure that can run Node.js. Prior to versions 8.6.2 and 9.1.1-alpha.1, the Instagram authentication adapter allows clients to specify a custom API URL via the `apiURL` parameter in `authData`. This enables SSRF attacks and possibly authentication bypass if malicious endpoints return fake responses to validate unauthorized users. This is fixed in versions 8.6.2 and 9.1.1-alpha.1 by hardcoding the Instagram Graph API URL `https://graph.instagram.com` and ignoring client-provided `apiURL` values. No known workarounds are available. |
| Weblate is a web based localization tool. In versions prior to 5.15.1, it was possible to read arbitrary files from the server file system using crafted symbolic links in the repository. Version 5.15.1 fixes the issue. |
| Weblate is a web based localization tool. In versions prior to 5.15.1, it was possible to overwrite Git configuration remotely and override some of its behavior. Version 5.15.1 fixes the issue. |
| Roundcube Webmail before 1.5.12 and 1.6 before 1.6.12 is prone to a information disclosure vulnerability in the HTML style sanitizer. |
| Cypress Solutions CTM-200/CTM-ONE 1.3.6 contains hard-coded credentials vulnerability in Linux distribution that exposes root access. Attackers can exploit the static 'Chameleon' password to gain remote root access via Telnet or SSH on affected devices. |
| Roundcube Webmail before 1.5.12 and 1.6 before 1.6.12 is prone to a Cross-Site-Scripting (XSS) vulnerability via the animate tag in an SVG document. |
| Langflow is a tool for building and deploying AI-powered agents and workflows. Prior to version 1.7.0, Langflow provides an API Request component that can issue arbitrary HTTP requests within a flow. This component takes a user-supplied URL, performs only normalization and basic format checks, and then sends the request using a server-side httpx client. It does not block private IP ranges (127[.]0[.]0[.]1, the 10/172/192 ranges) or cloud metadata endpoints (169[.]254[.]169[.]254), and it returns the response body as the result. Because the flow execution endpoints (/api/v1/run, /api/v1/run/advanced) can be invoked with just an API key, if an attacker can control the API Request URL in a flow, non-blind SSRF is possible—accessing internal resources from the server’s network context. This enables requests to, and collection of responses from, internal administrative endpoints, metadata services, and internal databases/services, leading to information disclosure and providing a foothold for further attacks. Version 1.7.0 contains a patch for this issue. |
| Langflow is a tool for building and deploying AI-powered agents and workflows. Prior to version 1.7.0, if an arbitrary path is specified in the request body's `fs_path`, the server serializes the Flow object into JSON and creates/overwrites a file at that path. There is no path restriction, normalization, or allowed directory enforcement, so absolute paths (e.g., /etc/poc.txt) are interpreted as is. Version 1.7.0 fixes the issue. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: SCO: Fix UAF on sco_conn_free
BUG: KASAN: slab-use-after-free in sco_conn_free net/bluetooth/sco.c:87 [inline]
BUG: KASAN: slab-use-after-free in kref_put include/linux/kref.h:65 [inline]
BUG: KASAN: slab-use-after-free in sco_conn_put+0xdd/0x410
net/bluetooth/sco.c:107
Write of size 8 at addr ffff88811cb96b50 by task kworker/u17:4/352
CPU: 1 UID: 0 PID: 352 Comm: kworker/u17:4 Not tainted
6.17.0-rc5-g717368f83676 #4 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Workqueue: hci13 hci_cmd_sync_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x10b/0x170 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x191/0x550 mm/kasan/report.c:482
kasan_report+0xc4/0x100 mm/kasan/report.c:595
sco_conn_free net/bluetooth/sco.c:87 [inline]
kref_put include/linux/kref.h:65 [inline]
sco_conn_put+0xdd/0x410 net/bluetooth/sco.c:107
sco_connect_cfm+0xb4/0xae0 net/bluetooth/sco.c:1441
hci_connect_cfm include/net/bluetooth/hci_core.h:2082 [inline]
hci_conn_failed+0x20a/0x2e0 net/bluetooth/hci_conn.c:1313
hci_conn_unlink+0x55f/0x810 net/bluetooth/hci_conn.c:1121
hci_conn_del+0xb6/0x1110 net/bluetooth/hci_conn.c:1147
hci_abort_conn_sync+0x8c5/0xbb0 net/bluetooth/hci_sync.c:5689
hci_cmd_sync_work+0x281/0x380 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3236 [inline]
process_scheduled_works+0x77e/0x1040 kernel/workqueue.c:3319
worker_thread+0xbee/0x1200 kernel/workqueue.c:3400
kthread+0x3c7/0x870 kernel/kthread.c:463
ret_from_fork+0x13a/0x1e0 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 31370:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x30/0x70 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:388 [inline]
__kasan_kmalloc+0x82/0x90 mm/kasan/common.c:405
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4382 [inline]
__kmalloc_noprof+0x22f/0x390 mm/slub.c:4394
kmalloc_noprof include/linux/slab.h:909 [inline]
sk_prot_alloc+0xae/0x220 net/core/sock.c:2239
sk_alloc+0x34/0x5a0 net/core/sock.c:2295
bt_sock_alloc+0x3c/0x330 net/bluetooth/af_bluetooth.c:151
sco_sock_alloc net/bluetooth/sco.c:562 [inline]
sco_sock_create+0xc0/0x350 net/bluetooth/sco.c:593
bt_sock_create+0x161/0x3b0 net/bluetooth/af_bluetooth.c:135
__sock_create+0x3ad/0x780 net/socket.c:1589
sock_create net/socket.c:1647 [inline]
__sys_socket_create net/socket.c:1684 [inline]
__sys_socket+0xd5/0x330 net/socket.c:1731
__do_sys_socket net/socket.c:1745 [inline]
__se_sys_socket net/socket.c:1743 [inline]
__x64_sys_socket+0x7a/0x90 net/socket.c:1743
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xc7/0x240 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 31374:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x30/0x70 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:243 [inline]
__kasan_slab_free+0x3d/0x50 mm/kasan/common.c:275
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2428 [inline]
slab_free mm/slub.c:4701 [inline]
kfree+0x199/0x3b0 mm/slub.c:4900
sk_prot_free net/core/sock.c:2278 [inline]
__sk_destruct+0x4aa/0x630 net/core/sock.c:2373
sco_sock_release+0x2ad/0x300 net/bluetooth/sco.c:1333
__sock_release net/socket.c:649 [inline]
sock_close+0xb8/0x230 net/socket.c:1439
__fput+0x3d1/0x9e0 fs/file_table.c:468
task_work_run+0x206/0x2a0 kernel/task_work.c:227
get_signal+0x1201/0x1410 kernel/signal.c:2807
arch_do_signal_or_restart+0x34/0x740 arch/x86/kernel/signal.c:337
exit_to_user_mode_loop+0x68/0xc0 kernel/entry/common.c:40
exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline]
s
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
9p/trans_fd: p9_fd_request: kick rx thread if EPOLLIN
p9_read_work() doesn't set Rworksched and doesn't do schedule_work(m->rq)
if list_empty(&m->req_list).
However, if the pipe is full, we need to read more data and this used to
work prior to commit aaec5a95d59615 ("pipe_read: don't wake up the writer
if the pipe is still full").
p9_read_work() does p9_fd_read() -> ... -> anon_pipe_read() which (before
the commit above) triggered the unnecessary wakeup. This wakeup calls
p9_pollwake() which kicks p9_poll_workfn() -> p9_poll_mux(), p9_poll_mux()
will notice EPOLLIN and schedule_work(&m->rq).
This no longer happens after the optimization above, change p9_fd_request()
to use p9_poll_mux() instead of only checking for EPOLLOUT. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential overflow of PCM transfer buffer
The PCM stream data in USB-audio driver is transferred over USB URB
packet buffers, and each packet size is determined dynamically. The
packet sizes are limited by some factors such as wMaxPacketSize USB
descriptor. OTOH, in the current code, the actually used packet sizes
are determined only by the rate and the PPS, which may be bigger than
the size limit above. This results in a buffer overflow, as reported
by syzbot.
Basically when the limit is smaller than the calculated packet size,
it implies that something is wrong, most likely a weird USB
descriptor. So the best option would be just to return an error at
the parameter setup time before doing any further operations.
This patch introduces such a sanity check, and returns -EINVAL when
the packet size is greater than maxpacksize. The comparison with
ep->packsize[1] alone should suffice since it's always equal or
greater than ep->packsize[0]. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: cros_ec_keyb - fix an invalid memory access
If cros_ec_keyb_register_matrix() isn't called (due to
`buttons_switches_only`) in cros_ec_keyb_probe(), `ckdev->idev` remains
NULL. An invalid memory access is observed in cros_ec_keyb_process()
when receiving an EC_MKBP_EVENT_KEY_MATRIX event in cros_ec_keyb_work()
in such case.
Unable to handle kernel read from unreadable memory at virtual address 0000000000000028
...
x3 : 0000000000000000 x2 : 0000000000000000
x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
input_event
cros_ec_keyb_work
blocking_notifier_call_chain
ec_irq_thread
It's still unknown about why the kernel receives such malformed event,
in any cases, the kernel shouldn't access `ckdev->idev` and friends if
the driver doesn't intend to initialize them. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: increase scan_ies_len for S1G
Currently the S1G capability element is not taken into account
for the scan_ies_len, which leads to a buffer length validation
failure in ieee80211_prep_hw_scan() and subsequent WARN in
__ieee80211_start_scan(). This prevents hw scanning from functioning.
To fix ensure we accommodate for the S1G capability length. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: prevent NULL pointer dereference in UTF16 conversion
There can be a NULL pointer dereference bug here. NULL is passed to
__cifs_sfu_make_node without checks, which passes it unchecked to
cifs_strndup_to_utf16, which in turn passes it to
cifs_local_to_utf16_bytes where '*from' is dereferenced, causing a crash.
This patch adds a check for NULL 'src' in cifs_strndup_to_utf16 and
returns NULL early to prevent dereferencing NULL pointer.
Found by Linux Verification Center (linuxtesting.org) with SVACE |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Set .migrate_folio in gfs2_{rgrp,meta}_aops
Clears up the warning added in 7ee3647243e5 ("migrate: Remove call to
->writepage") that occurs in various xfstests, causing "something found
in dmesg" failures.
[ 341.136573] gfs2_meta_aops does not implement migrate_folio
[ 341.136953] WARNING: CPU: 1 PID: 36 at mm/migrate.c:944 move_to_new_folio+0x2f8/0x300 |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix deadlock between rcu_tasks_trace and event_mutex.
Fix the following deadlock:
CPU A
_free_event()
perf_kprobe_destroy()
mutex_lock(&event_mutex)
perf_trace_event_unreg()
synchronize_rcu_tasks_trace()
There are several paths where _free_event() grabs event_mutex
and calls sync_rcu_tasks_trace. Above is one such case.
CPU B
bpf_prog_test_run_syscall()
rcu_read_lock_trace()
bpf_prog_run_pin_on_cpu()
bpf_prog_load()
bpf_tracing_func_proto()
trace_set_clr_event()
mutex_lock(&event_mutex)
Delegate trace_set_clr_event() to workqueue to avoid
such lock dependency. |