| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The AJS Footnotes plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'note_list_class' and 'popup_display_effect_in' parameters in all versions up to, and including, 1.0 due to missing authorization and nonce verification on settings save, as well as insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to update plugin settings and inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Kunze Law plugin for WordPress is vulnerable to Stored Cross-Site Scripting via plugin's shortcode in all versions up to, and including, 2.1 due to the plugin fetching HTML content from a remote server and injecting it into pages without any sanitization or escaping. This makes it possible for authenticated attackers, with Administrator-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled.
Additional presence of a path traversal vulnerability in the shortcode name allows writing malicious HTML files to arbitrary writable locations on the server. |
| The Aplazo Payment Gateway plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the check_success_response() function in all versions up to, and including, 1.4.2. This makes it possible for unauthenticated attackers to set any WooCommerce order to `pending payment` status. |
| Lack of authorization of the InputManager D-Bus interface in
InputPlumber versions before v0.63.0 can lead to local Denial-of-Service,
information leak or even privilege escalation in the context of the
currently active user session. |
| Multi-thread race condition vulnerability in the card framework module.
Impact: Successful exploitation of this vulnerability may affect availability. |
| Multi-thread race condition vulnerability in the video framework module.
Impact: Successful exploitation of this vulnerability may affect availability. |
| Man-in-the-middle attack vulnerability in the Clone module.
Impact: Successful exploitation of this vulnerability may affect service confidentiality. |
| Permission verification bypass vulnerability in the media library module.
Impact: Successful exploitation of this vulnerability may affect service confidentiality. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: adreno: fix deferencing ifpc_reglist when not declared
On plaforms with an a7xx GPU not supporting IFPC, the ifpc_reglist
if still deferenced in a7xx_patch_pwrup_reglist() which causes
a kernel crash:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
...
pc : a6xx_hw_init+0x155c/0x1e4c [msm]
lr : a6xx_hw_init+0x9a8/0x1e4c [msm]
...
Call trace:
a6xx_hw_init+0x155c/0x1e4c [msm] (P)
msm_gpu_hw_init+0x58/0x88 [msm]
adreno_load_gpu+0x94/0x1fc [msm]
msm_open+0xe4/0xf4 [msm]
drm_file_alloc+0x1a0/0x2e4 [drm]
drm_client_init+0x7c/0x104 [drm]
drm_fbdev_client_setup+0x94/0xcf0 [drm_client_lib]
drm_client_setup+0xb4/0xd8 [drm_client_lib]
msm_drm_kms_post_init+0x2c/0x3c [msm]
msm_drm_init+0x1a4/0x228 [msm]
msm_drm_bind+0x30/0x3c [msm]
...
Check the validity of ifpc_reglist before deferencing the table
to setup the register values.
Patchwork: https://patchwork.freedesktop.org/patch/688944/ |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: ensure node page reads complete before f2fs_put_super() finishes
Xfstests generic/335, generic/336 sometimes crash with the following message:
F2FS-fs (dm-0): detect filesystem reference count leak during umount, type: 9, count: 1
------------[ cut here ]------------
kernel BUG at fs/f2fs/super.c:1939!
Oops: invalid opcode: 0000 [#1] SMP NOPTI
CPU: 1 UID: 0 PID: 609351 Comm: umount Tainted: G W 6.17.0-rc5-xfstests-g9dd1835ecda5 #1 PREEMPT(none)
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:f2fs_put_super+0x3b3/0x3c0
Call Trace:
<TASK>
generic_shutdown_super+0x7e/0x190
kill_block_super+0x1a/0x40
kill_f2fs_super+0x9d/0x190
deactivate_locked_super+0x30/0xb0
cleanup_mnt+0xba/0x150
task_work_run+0x5c/0xa0
exit_to_user_mode_loop+0xb7/0xc0
do_syscall_64+0x1ae/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
---[ end trace 0000000000000000 ]---
It appears that sometimes it is possible that f2fs_put_super() is called before
all node page reads are completed.
Adding a call to f2fs_wait_on_all_pages() for F2FS_RD_NODE fixes the problem. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Handle incorrect num_connectors capability
The UCSI spec states that the num_connectors field is 7 bits, and the
8th bit is reserved and should be set to zero.
Some buggy FW has been known to set this bit, and it can lead to a
system not booting.
Flag that the FW is not behaving correctly, and auto-fix the value
so that the system boots correctly.
Found on Lenovo P1 G8 during Linux enablement program. The FW will
be fixed, but seemed worth addressing in case it hit platforms that
aren't officially Linux supported. |
| In the Linux kernel, the following vulnerability has been resolved:
MIPS: ftrace: Fix memory corruption when kernel is located beyond 32 bits
Since commit e424054000878 ("MIPS: Tracing: Reduce the overhead of
dynamic Function Tracer"), the macro UASM_i_LA_mostly has been used,
and this macro can generate more than 2 instructions. At the same
time, the code in ftrace assumes that no more than 2 instructions can
be generated, which is why it stores them in an int[2] array. However,
as previously noted, the macro UASM_i_LA_mostly (and now UASM_i_LA)
causes a buffer overflow when _mcount is beyond 32 bits. This leads to
corruption of the variables located in the __read_mostly section.
This corruption was observed because the variable
__cpu_primary_thread_mask was corrupted, causing a hang very early
during boot.
This fix prevents the corruption by avoiding the generation of
instructions if they could exceed 2 instructions in
length. Fortunately, insn_la_mcount is only used if the instrumented
code is located outside the kernel code section, so dynamic ftrace can
still be used, albeit in a more limited scope. This is still
preferable to corrupting memory and/or crashing the kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slub: reset KASAN tag in defer_free() before accessing freed memory
When CONFIG_SLUB_TINY is enabled, kfree_nolock() calls kasan_slab_free()
before defer_free(). On ARM64 with MTE (Memory Tagging Extension),
kasan_slab_free() poisons the memory and changes the tag from the
original (e.g., 0xf3) to a poison tag (0xfe).
When defer_free() then tries to write to the freed object to build the
deferred free list via llist_add(), the pointer still has the old tag,
causing a tag mismatch and triggering a KASAN use-after-free report:
BUG: KASAN: slab-use-after-free in defer_free+0x3c/0xbc mm/slub.c:6537
Write at addr f3f000000854f020 by task kworker/u8:6/983
Pointer tag: [f3], memory tag: [fe]
Fix this by calling kasan_reset_tag() before accessing the freed memory.
This is safe because defer_free() is part of the allocator itself and is
expected to manipulate freed memory for bookkeeping purposes. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83791d) Convert macros to functions to avoid TOCTOU
The macro FAN_FROM_REG evaluates its arguments multiple times. When used
in lockless contexts involving shared driver data, this leads to
Time-of-Check to Time-of-Use (TOCTOU) race conditions, potentially
causing divide-by-zero errors.
Convert the macro to a static function. This guarantees that arguments
are evaluated only once (pass-by-value), preventing the race
conditions.
Additionally, in store_fan_div, move the calculation of the minimum
limit inside the update lock. This ensures that the read-modify-write
sequence operates on consistent data.
Adhere to the principle of minimal changes by only converting macros
that evaluate arguments multiple times and are used in lockless
contexts. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: add VLAN id validation before using
Currently, the VLAN id may be used without validation when
receive a VLAN configuration mailbox from VF. The length of
vlan_del_fail_bmap is BITS_TO_LONGS(VLAN_N_VID). It may cause
out-of-bounds memory access once the VLAN id is bigger than
or equal to VLAN_N_VID.
Therefore, VLAN id needs to be checked to ensure it is within
the range of VLAN_N_VID. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: af_alg - zero initialize memory allocated via sock_kmalloc
Several crypto user API contexts and requests allocated with
sock_kmalloc() were left uninitialized, relying on callers to
set fields explicitly. This resulted in the use of uninitialized
data in certain error paths or when new fields are added in the
future.
The ACVP patches also contain two user-space interface files:
algif_kpp.c and algif_akcipher.c. These too rely on proper
initialization of their context structures.
A particular issue has been observed with the newly added
'inflight' variable introduced in af_alg_ctx by commit:
67b164a871af ("crypto: af_alg - Disallow multiple in-flight AIO requests")
Because the context is not memset to zero after allocation,
the inflight variable has contained garbage values. As a result,
af_alg_alloc_areq() has incorrectly returned -EBUSY randomly when
the garbage value was interpreted as true:
https://github.com/gregkh/linux/blame/master/crypto/af_alg.c#L1209
The check directly tests ctx->inflight without explicitly
comparing against true/false. Since inflight is only ever set to
true or false later, an uninitialized value has triggered
-EBUSY failures. Zero-initializing memory allocated with
sock_kmalloc() ensures inflight and other fields start in a known
state, removing random issues caused by uninitialized data. |
| In the Linux kernel, the following vulnerability has been resolved:
via_wdt: fix critical boot hang due to unnamed resource allocation
The VIA watchdog driver uses allocate_resource() to reserve a MMIO
region for the watchdog control register. However, the allocated
resource was not given a name, which causes the kernel resource tree
to contain an entry marked as "<BAD>" under /proc/iomem on x86
platforms.
During boot, this unnamed resource can lead to a critical hang because
subsequent resource lookups and conflict checks fail to handle the
invalid entry properly. |
| In the Linux kernel, the following vulnerability has been resolved:
block: Remove queue freezing from several sysfs store callbacks
Freezing the request queue from inside sysfs store callbacks may cause a
deadlock in combination with the dm-multipath driver and the
queue_if_no_path option. Additionally, freezing the request queue slows
down system boot on systems where sysfs attributes are set synchronously.
Fix this by removing the blk_mq_freeze_queue() / blk_mq_unfreeze_queue()
calls from the store callbacks that do not strictly need these callbacks.
Add the __data_racy annotation to request_queue.rq_timeout to suppress
KCSAN data race reports about the rq_timeout reads.
This patch may cause a small delay in applying the new settings.
For all the attributes affected by this patch, I/O will complete
correctly whether the old or the new value of the attribute is used.
This patch affects the following sysfs attributes:
* io_poll_delay
* io_timeout
* nomerges
* read_ahead_kb
* rq_affinity
Here is an example of a deadlock triggered by running test srp/002
if this patch is not applied:
task:multipathd
Call Trace:
<TASK>
__schedule+0x8c1/0x1bf0
schedule+0xdd/0x270
schedule_preempt_disabled+0x1c/0x30
__mutex_lock+0xb89/0x1650
mutex_lock_nested+0x1f/0x30
dm_table_set_restrictions+0x823/0xdf0
__bind+0x166/0x590
dm_swap_table+0x2a7/0x490
do_resume+0x1b1/0x610
dev_suspend+0x55/0x1a0
ctl_ioctl+0x3a5/0x7e0
dm_ctl_ioctl+0x12/0x20
__x64_sys_ioctl+0x127/0x1a0
x64_sys_call+0xe2b/0x17d0
do_syscall_64+0x96/0x3a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
task:(udev-worker)
Call Trace:
<TASK>
__schedule+0x8c1/0x1bf0
schedule+0xdd/0x270
blk_mq_freeze_queue_wait+0xf2/0x140
blk_mq_freeze_queue_nomemsave+0x23/0x30
queue_ra_store+0x14e/0x290
queue_attr_store+0x23e/0x2c0
sysfs_kf_write+0xde/0x140
kernfs_fop_write_iter+0x3b2/0x630
vfs_write+0x4fd/0x1390
ksys_write+0xfd/0x230
__x64_sys_write+0x76/0xc0
x64_sys_call+0x276/0x17d0
do_syscall_64+0x96/0x3a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Avoid walking the Namespace if start_node is NULL
Although commit 0c9992315e73 ("ACPICA: Avoid walking the ACPI Namespace
if it is not there") fixed the situation when both start_node and
acpi_gbl_root_node are NULL, the Linux kernel mainline now still crashed
on Honor Magicbook 14 Pro [1].
That happens due to the access to the member of parent_node in
acpi_ns_get_next_node(). The NULL pointer dereference will always
happen, no matter whether or not the start_node is equal to
ACPI_ROOT_OBJECT, so move the check of start_node being NULL
out of the if block.
Unfortunately, all the attempts to contact Honor have failed, they
refused to provide any technical support for Linux.
The bad DSDT table's dump could be found on GitHub [2].
DMI: HONOR FMB-P/FMB-P-PCB, BIOS 1.13 05/08/2025
[ rjw: Subject adjustment, changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/kexec: Enable SMT before waking offline CPUs
If SMT is disabled or a partial SMT state is enabled, when a new kernel
image is loaded for kexec, on reboot the following warning is observed:
kexec: Waking offline cpu 228.
WARNING: CPU: 0 PID: 9062 at arch/powerpc/kexec/core_64.c:223 kexec_prepare_cpus+0x1b0/0x1bc
[snip]
NIP kexec_prepare_cpus+0x1b0/0x1bc
LR kexec_prepare_cpus+0x1a0/0x1bc
Call Trace:
kexec_prepare_cpus+0x1a0/0x1bc (unreliable)
default_machine_kexec+0x160/0x19c
machine_kexec+0x80/0x88
kernel_kexec+0xd0/0x118
__do_sys_reboot+0x210/0x2c4
system_call_exception+0x124/0x320
system_call_vectored_common+0x15c/0x2ec
This occurs as add_cpu() fails due to cpu_bootable() returning false for
CPUs that fail the cpu_smt_thread_allowed() check or non primary
threads if SMT is disabled.
Fix the issue by enabling SMT and resetting the number of SMT threads to
the number of threads per core, before attempting to wake up all present
CPUs. |