| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
HID: hyperv: fix possible memory leak in mousevsc_probe()
If hid_add_device() returns error, it should call hid_destroy_device()
to free hid_dev which is allocated in hid_allocate_device(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: tun: Fix memory leaks of napi_get_frags
kmemleak reports after running test_progs:
unreferenced object 0xffff8881b1672dc0 (size 232):
comm "test_progs", pid 394388, jiffies 4354712116 (age 841.975s)
hex dump (first 32 bytes):
e0 84 d7 a8 81 88 ff ff 80 2c 67 b1 81 88 ff ff .........,g.....
00 40 c5 9b 81 88 ff ff 00 00 00 00 00 00 00 00 .@..............
backtrace:
[<00000000c8f01748>] napi_skb_cache_get+0xd4/0x150
[<0000000041c7fc09>] __napi_build_skb+0x15/0x50
[<00000000431c7079>] __napi_alloc_skb+0x26e/0x540
[<000000003ecfa30e>] napi_get_frags+0x59/0x140
[<0000000099b2199e>] tun_get_user+0x183d/0x3bb0 [tun]
[<000000008a5adef0>] tun_chr_write_iter+0xc0/0x1b1 [tun]
[<0000000049993ff4>] do_iter_readv_writev+0x19f/0x320
[<000000008f338ea2>] do_iter_write+0x135/0x630
[<000000008a3377a4>] vfs_writev+0x12e/0x440
[<00000000a6b5639a>] do_writev+0x104/0x280
[<00000000ccf065d8>] do_syscall_64+0x3b/0x90
[<00000000d776e329>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
The issue occurs in the following scenarios:
tun_get_user()
napi_gro_frags()
napi_frags_finish()
case GRO_NORMAL:
gro_normal_one()
list_add_tail(&skb->list, &napi->rx_list);
<-- While napi->rx_count < READ_ONCE(gro_normal_batch),
<-- gro_normal_list() is not called, napi->rx_list is not empty
<-- not ask to complete the gro work, will cause memory leaks in
<-- following tun_napi_del()
...
tun_napi_del()
netif_napi_del()
__netif_napi_del()
<-- &napi->rx_list is not empty, which caused memory leaks
To fix, add napi_complete() after napi_gro_frags(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: wwan: iosm: fix memory leak in ipc_wwan_dellink
IOSM driver registers network device without setting the
needs_free_netdev flag, and does NOT call free_netdev() when
unregisters network device, which causes a memory leak.
This patch sets needs_free_netdev to true when registers
network device, which makes netdev subsystem call free_netdev()
automatically after unregister_netdevice(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: wwan: mhi: fix memory leak in mhi_mbim_dellink
MHI driver registers network device without setting the
needs_free_netdev flag, and does NOT call free_netdev() when
unregisters network device, which causes a memory leak.
This patch sets needs_free_netdev to true when registers
network device, which makes netdev subsystem call free_netdev()
automatically after unregister_netdevice(). |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: k3-udma-glue: fix memory leak when register device fail
If device_register() fails, it should call put_device() to give
up reference, the name allocated in dev_set_name() can be freed
in callback function kobject_cleanup(). |
| The strcmp implementation optimized for the Power10 processor in the GNU C Library version 2.39 and later writes to vector registers v20 to v31 without saving contents from the caller (those registers are defined as non-volatile registers by the powerpc64le ABI), resulting in overwriting of its contents and potentially altering control flow of the caller, or leaking the input strings to the function to other parts of the program. |
| In the Linux kernel, the following vulnerability has been resolved:
nfs4: Fix kmemleak when allocate slot failed
If one of the slot allocate failed, should cleanup all the other
allocated slots, otherwise, the allocated slots will leak:
unreferenced object 0xffff8881115aa100 (size 64):
comm ""mount.nfs"", pid 679, jiffies 4294744957 (age 115.037s)
hex dump (first 32 bytes):
00 cc 19 73 81 88 ff ff 00 a0 5a 11 81 88 ff ff ...s......Z.....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000007a4c434a>] nfs4_find_or_create_slot+0x8e/0x130
[<000000005472a39c>] nfs4_realloc_slot_table+0x23f/0x270
[<00000000cd8ca0eb>] nfs40_init_client+0x4a/0x90
[<00000000128486db>] nfs4_init_client+0xce/0x270
[<000000008d2cacad>] nfs4_set_client+0x1a2/0x2b0
[<000000000e593b52>] nfs4_create_server+0x300/0x5f0
[<00000000e4425dd2>] nfs4_try_get_tree+0x65/0x110
[<00000000d3a6176f>] vfs_get_tree+0x41/0xf0
[<0000000016b5ad4c>] path_mount+0x9b3/0xdd0
[<00000000494cae71>] __x64_sys_mount+0x190/0x1d0
[<000000005d56bdec>] do_syscall_64+0x35/0x80
[<00000000687c9ae4>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: Fix possible memory leaks in dsa_loop_init()
kmemleak reported memory leaks in dsa_loop_init():
kmemleak: 12 new suspected memory leaks
unreferenced object 0xffff8880138ce000 (size 2048):
comm "modprobe", pid 390, jiffies 4295040478 (age 238.976s)
backtrace:
[<000000006a94f1d5>] kmalloc_trace+0x26/0x60
[<00000000a9c44622>] phy_device_create+0x5d/0x970
[<00000000d0ee2afc>] get_phy_device+0xf3/0x2b0
[<00000000dca0c71f>] __fixed_phy_register.part.0+0x92/0x4e0
[<000000008a834798>] fixed_phy_register+0x84/0xb0
[<0000000055223fcb>] dsa_loop_init+0xa9/0x116 [dsa_loop]
...
There are two reasons for memleak in dsa_loop_init().
First, fixed_phy_register() create and register phy_device:
fixed_phy_register()
get_phy_device()
phy_device_create() # freed by phy_device_free()
phy_device_register() # freed by phy_device_remove()
But fixed_phy_unregister() only calls phy_device_remove().
So the memory allocated in phy_device_create() is leaked.
Second, when mdio_driver_register() fail in dsa_loop_init(),
it just returns and there is no cleanup for phydevs.
Fix the problems by catching the error of mdio_driver_register()
in dsa_loop_init(), then calling both fixed_phy_unregister() and
phy_device_free() to release phydevs.
Also add a function for phydevs cleanup to avoid duplacate. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: fdp: Fix potential memory leak in fdp_nci_send()
fdp_nci_send() will call fdp_nci_i2c_write that will not free skb in
the function. As a result, when fdp_nci_i2c_write() finished, the skb
will memleak. fdp_nci_send() should free skb after fdp_nci_i2c_write()
finished. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: nxp-nci: Fix potential memory leak in nxp_nci_send()
nxp_nci_send() will call nxp_nci_i2c_write(), and only free skb when
nxp_nci_i2c_write() failed. However, even if the nxp_nci_i2c_write()
run succeeds, the skb will not be freed in nxp_nci_i2c_write(). As the
result, the skb will memleak. nxp_nci_send() should also free the skb
when nxp_nci_i2c_write() succeeds. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: nfcmrvl: Fix potential memory leak in nfcmrvl_i2c_nci_send()
nfcmrvl_i2c_nci_send() will be called by nfcmrvl_nci_send(), and skb
should be freed in nfcmrvl_i2c_nci_send(). However, nfcmrvl_nci_send()
will only free skb when i2c_master_send() return >=0, which means skb
will memleak when i2c_master_send() failed. Free skb no matter whether
i2c_master_send() succeeds. |
| In the Linux kernel, the following vulnerability has been resolved:
block: Fix possible memory leak for rq_wb on add_disk failure
kmemleak reported memory leaks in device_add_disk():
kmemleak: 3 new suspected memory leaks
unreferenced object 0xffff88800f420800 (size 512):
comm "modprobe", pid 4275, jiffies 4295639067 (age 223.512s)
hex dump (first 32 bytes):
04 00 00 00 08 00 00 00 01 00 00 00 00 00 00 00 ................
00 e1 f5 05 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000d3662699>] kmalloc_trace+0x26/0x60
[<00000000edc7aadc>] wbt_init+0x50/0x6f0
[<0000000069601d16>] wbt_enable_default+0x157/0x1c0
[<0000000028fc393f>] blk_register_queue+0x2a4/0x420
[<000000007345a042>] device_add_disk+0x6fd/0xe40
[<0000000060e6aab0>] nbd_dev_add+0x828/0xbf0 [nbd]
...
It is because the memory allocated in wbt_enable_default() is not
released in device_add_disk() error path.
Normally, these memory are freed in:
del_gendisk()
rq_qos_exit()
rqos->ops->exit(rqos);
wbt_exit()
So rq_qos_exit() is called to free the rq_wb memory for wbt_init().
However in the error path of device_add_disk(), only
blk_unregister_queue() is called and make rq_wb memory leaked.
Add rq_qos_exit() to the error path to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal/debugfs: Free all thermal zone debug memory on zone removal
Because thermal_debug_tz_remove() does not free all memory allocated for
thermal zone diagnostics, some of that memory becomes unreachable after
freeing the thermal zone's struct thermal_debugfs object.
Address this by making thermal_debug_tz_remove() free all of the memory
in question.
Cc :6.8+ <stable@vger.kernel.org> # 6.8+ |
| In the Linux kernel, the following vulnerability has been resolved:
net: macsec: Fix offload support for NETDEV_UNREGISTER event
Current macsec netdev notify handler handles NETDEV_UNREGISTER event by
releasing relevant SW resources only, this causes resources leak in case
of macsec HW offload, as the underlay driver was not notified to clean
it's macsec offload resources.
Fix by calling the underlay driver to clean it's relevant resources
by moving offload handling from macsec_dellink() to macsec_common_dellink()
when handling NETDEV_UNREGISTER event. |
| An issue has been identified where a specially crafted request sent to an Observability API could cause the kibana server to crash.
A successful attack requires a malicious user to have read permissions for Observability assigned to them. |
| A flaw was discovered in Elasticsearch, where a large recursion using the innerForbidCircularReferences function of the PatternBank class could cause the Elasticsearch node to crash.
A successful attack requires a malicious user to have read_pipeline Elasticsearch cluster privilege assigned to them. |
| A vulnerability was found in HobbesOSR Kitten up to c4f8b7c3158983d1020af432be1b417b28686736 and classified as critical. Affected by this issue is the function set_pte_at in the library /include/arch-arm64/pgtable.h. The manipulation leads to resource consumption. Continious delivery with rolling releases is used by this product. Therefore, no version details of affected nor updated releases are available. |
| A vulnerability classified as problematic has been found in HTACG tidy-html5 5.8.0. Affected is the function defaultAlloc of the file src/alloc.c. The manipulation leads to memory leak. It is possible to launch the attack on the local host. The exploit has been disclosed to the public and may be used. |
| In the Linux kernel, the following vulnerability has been resolved:
hv_netvsc: Don't free decrypted memory
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The netvsc driver could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the gpadl
to decide whether to free the memory. |
| In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Don't free ring buffers that couldn't be re-encrypted
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The VMBus ring buffer code could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the struct
vmbus_gpadl for the ring buffers to decide whether to free the memory. |