| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
padata: avoid UAF for reorder_work
Although the previous patch can avoid ps and ps UAF for _do_serial, it
can not avoid potential UAF issue for reorder_work. This issue can
happen just as below:
crypto_request crypto_request crypto_del_alg
padata_do_serial
...
padata_reorder
// processes all remaining
// requests then breaks
while (1) {
if (!padata)
break;
...
}
padata_do_serial
// new request added
list_add
// sees the new request
queue_work(reorder_work)
padata_reorder
queue_work_on(squeue->work)
...
<kworker context>
padata_serial_worker
// completes new request,
// no more outstanding
// requests
crypto_del_alg
// free pd
<kworker context>
invoke_padata_reorder
// UAF of pd
To avoid UAF for 'reorder_work', get 'pd' ref before put 'reorder_work'
into the 'serial_wq' and put 'pd' ref until the 'serial_wq' finish. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: do not force clear folio if buffer is referenced
Patch series "nilfs2: protect busy buffer heads from being force-cleared".
This series fixes the buffer head state inconsistency issues reported by
syzbot that occurs when the filesystem is corrupted and falls back to
read-only, and the associated buffer head use-after-free issue.
This patch (of 2):
Syzbot has reported that after nilfs2 detects filesystem corruption and
falls back to read-only, inconsistencies in the buffer state may occur.
One of the inconsistencies is that when nilfs2 calls mark_buffer_dirty()
to set a data or metadata buffer as dirty, but it detects that the buffer
is not in the uptodate state:
WARNING: CPU: 0 PID: 6049 at fs/buffer.c:1177 mark_buffer_dirty+0x2e5/0x520
fs/buffer.c:1177
...
Call Trace:
<TASK>
nilfs_palloc_commit_alloc_entry+0x4b/0x160 fs/nilfs2/alloc.c:598
nilfs_ifile_create_inode+0x1dd/0x3a0 fs/nilfs2/ifile.c:73
nilfs_new_inode+0x254/0x830 fs/nilfs2/inode.c:344
nilfs_mkdir+0x10d/0x340 fs/nilfs2/namei.c:218
vfs_mkdir+0x2f9/0x4f0 fs/namei.c:4257
do_mkdirat+0x264/0x3a0 fs/namei.c:4280
__do_sys_mkdirat fs/namei.c:4295 [inline]
__se_sys_mkdirat fs/namei.c:4293 [inline]
__x64_sys_mkdirat+0x87/0xa0 fs/namei.c:4293
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The other is when nilfs_btree_propagate(), which propagates the dirty
state to the ancestor nodes of a b-tree that point to a dirty buffer,
detects that the origin buffer is not dirty, even though it should be:
WARNING: CPU: 0 PID: 5245 at fs/nilfs2/btree.c:2089
nilfs_btree_propagate+0xc79/0xdf0 fs/nilfs2/btree.c:2089
...
Call Trace:
<TASK>
nilfs_bmap_propagate+0x75/0x120 fs/nilfs2/bmap.c:345
nilfs_collect_file_data+0x4d/0xd0 fs/nilfs2/segment.c:587
nilfs_segctor_apply_buffers+0x184/0x340 fs/nilfs2/segment.c:1006
nilfs_segctor_scan_file+0x28c/0xa50 fs/nilfs2/segment.c:1045
nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1216 [inline]
nilfs_segctor_collect fs/nilfs2/segment.c:1540 [inline]
nilfs_segctor_do_construct+0x1c28/0x6b90 fs/nilfs2/segment.c:2115
nilfs_segctor_construct+0x181/0x6b0 fs/nilfs2/segment.c:2479
nilfs_segctor_thread_construct fs/nilfs2/segment.c:2587 [inline]
nilfs_segctor_thread+0x69e/0xe80 fs/nilfs2/segment.c:2701
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Both of these issues are caused by the callbacks that handle the
page/folio write requests, forcibly clear various states, including the
working state of the buffers they hold, at unexpected times when they
detect read-only fallback.
Fix these issues by checking if the buffer is referenced before clearing
the page/folio state, and skipping the clear if it is. |
| In the Linux kernel, the following vulnerability has been resolved:
net: rose: fix timer races against user threads
Rose timers only acquire the socket spinlock, without
checking if the socket is owned by one user thread.
Add a check and rearm the timers if needed.
BUG: KASAN: slab-use-after-free in rose_timer_expiry+0x31d/0x360 net/rose/rose_timer.c:174
Read of size 2 at addr ffff88802f09b82a by task swapper/0/0
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.13.0-rc5-syzkaller-00172-gd1bf27c4e176 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
rose_timer_expiry+0x31d/0x360 net/rose/rose_timer.c:174
call_timer_fn+0x187/0x650 kernel/time/timer.c:1793
expire_timers kernel/time/timer.c:1844 [inline]
__run_timers kernel/time/timer.c:2418 [inline]
__run_timer_base+0x66a/0x8e0 kernel/time/timer.c:2430
run_timer_base kernel/time/timer.c:2439 [inline]
run_timer_softirq+0xb7/0x170 kernel/time/timer.c:2449
handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:561
__do_softirq kernel/softirq.c:595 [inline]
invoke_softirq kernel/softirq.c:435 [inline]
__irq_exit_rcu+0xf7/0x220 kernel/softirq.c:662
irq_exit_rcu+0x9/0x30 kernel/softirq.c:678
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1049
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
net: davicom: fix UAF in dm9000_drv_remove
dm is netdev private data and it cannot be
used after free_netdev() call. Using dm after free_netdev()
can cause UAF bug. Fix it by moving free_netdev() at the end of the
function.
This is similar to the issue fixed in commit
ad297cd2db89 ("net: qcom/emac: fix UAF in emac_remove").
This bug is detected by our static analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
netem: Update sch->q.qlen before qdisc_tree_reduce_backlog()
qdisc_tree_reduce_backlog() notifies parent qdisc only if child
qdisc becomes empty, therefore we need to reduce the backlog of the
child qdisc before calling it. Otherwise it would miss the opportunity
to call cops->qlen_notify(), in the case of DRR, it resulted in UAF
since DRR uses ->qlen_notify() to maintain its active list. |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: Disallow replacing of child qdisc from one parent to another
Lion Ackermann was able to create a UAF which can be abused for privilege
escalation with the following script
Step 1. create root qdisc
tc qdisc add dev lo root handle 1:0 drr
step2. a class for packet aggregation do demonstrate uaf
tc class add dev lo classid 1:1 drr
step3. a class for nesting
tc class add dev lo classid 1:2 drr
step4. a class to graft qdisc to
tc class add dev lo classid 1:3 drr
step5.
tc qdisc add dev lo parent 1:1 handle 2:0 plug limit 1024
step6.
tc qdisc add dev lo parent 1:2 handle 3:0 drr
step7.
tc class add dev lo classid 3:1 drr
step 8.
tc qdisc add dev lo parent 3:1 handle 4:0 pfifo
step 9. Display the class/qdisc layout
tc class ls dev lo
class drr 1:1 root leaf 2: quantum 64Kb
class drr 1:2 root leaf 3: quantum 64Kb
class drr 3:1 root leaf 4: quantum 64Kb
tc qdisc ls
qdisc drr 1: dev lo root refcnt 2
qdisc plug 2: dev lo parent 1:1
qdisc pfifo 4: dev lo parent 3:1 limit 1000p
qdisc drr 3: dev lo parent 1:2
step10. trigger the bug <=== prevented by this patch
tc qdisc replace dev lo parent 1:3 handle 4:0
step 11. Redisplay again the qdiscs/classes
tc class ls dev lo
class drr 1:1 root leaf 2: quantum 64Kb
class drr 1:2 root leaf 3: quantum 64Kb
class drr 1:3 root leaf 4: quantum 64Kb
class drr 3:1 root leaf 4: quantum 64Kb
tc qdisc ls
qdisc drr 1: dev lo root refcnt 2
qdisc plug 2: dev lo parent 1:1
qdisc pfifo 4: dev lo parent 3:1 refcnt 2 limit 1000p
qdisc drr 3: dev lo parent 1:2
Observe that a) parent for 4:0 does not change despite the replace request.
There can only be one parent. b) refcount has gone up by two for 4:0 and
c) both class 1:3 and 3:1 are pointing to it.
Step 12. send one packet to plug
echo "" | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888,priority=$((0x10001))
step13. send one packet to the grafted fifo
echo "" | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888,priority=$((0x10003))
step14. lets trigger the uaf
tc class delete dev lo classid 1:3
tc class delete dev lo classid 1:1
The semantics of "replace" is for a del/add _on the same node_ and not
a delete from one node(3:1) and add to another node (1:3) as in step10.
While we could "fix" with a more complex approach there could be
consequences to expectations so the patch takes the preventive approach of
"disallow such config".
Joint work with Lion Ackermann <nnamrec@gmail.com> |
| Insufficient resource pool in the core management mechanism for some Intel(R) Processors may allow an authenticated user to potentially enable denial of service via local access. |
| corydolphin/flask-cors version 4.0.1 contains an improper regex path matching vulnerability. The plugin prioritizes longer regex patterns over more specific ones when matching paths, which can lead to less restrictive CORS policies being applied to sensitive endpoints. This mismatch in regex pattern priority allows unauthorized cross-origin access to sensitive data or functionality, potentially exposing confidential information and increasing the risk of unauthorized actions by malicious actors. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Explicitly verify target vCPU is online in kvm_get_vcpu()
Explicitly verify the target vCPU is fully online _prior_ to clamping the
index in kvm_get_vcpu(). If the index is "bad", the nospec clamping will
generate '0', i.e. KVM will return vCPU0 instead of NULL.
In practice, the bug is unlikely to cause problems, as it will only come
into play if userspace or the guest is buggy or misbehaving, e.g. KVM may
send interrupts to vCPU0 instead of dropping them on the floor.
However, returning vCPU0 when it shouldn't exist per online_vcpus is
problematic now that KVM uses an xarray for the vCPUs array, as KVM needs
to insert into the xarray before publishing the vCPU to userspace (see
commit c5b077549136 ("KVM: Convert the kvm->vcpus array to a xarray")),
i.e. before vCPU creation is guaranteed to succeed.
As a result, incorrectly providing access to vCPU0 will trigger a
use-after-free if vCPU0 is dereferenced and kvm_vm_ioctl_create_vcpu()
bails out of vCPU creation due to an error and frees vCPU0. Commit
afb2acb2e3a3 ("KVM: Fix vcpu_array[0] races") papered over that issue, but
in doing so introduced an unsolvable teardown conundrum. Preventing
accesses to vCPU0 before it's fully online will allow reverting commit
afb2acb2e3a3, without re-introducing the vcpu_array[0] UAF race. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtlwifi: remove unused check_buddy_priv
Commit 2461c7d60f9f ("rtlwifi: Update header file") introduced a global
list of private data structures.
Later on, commit 26634c4b1868 ("rtlwifi Modify existing bits to match
vendor version 2013.02.07") started adding the private data to that list at
probe time and added a hook, check_buddy_priv to find the private data from
a similar device.
However, that function was never used.
Besides, though there is a lock for that list, it is never used. And when
the probe fails, the private data is never removed from the list. This
would cause a second probe to access freed memory.
Remove the unused hook, structures and members, which will prevent the
potential race condition on the list and its corruption during a second
probe when probe fails. |
| In the Linux kernel, the following vulnerability has been resolved:
team: prevent adding a device which is already a team device lower
Prevent adding a device which is already a team device lower,
e.g. adding veth0 if vlan1 was already added and veth0 is a lower of
vlan1.
This is not useful in practice and can lead to recursive locking:
$ ip link add veth0 type veth peer name veth1
$ ip link set veth0 up
$ ip link set veth1 up
$ ip link add link veth0 name veth0.1 type vlan protocol 802.1Q id 1
$ ip link add team0 type team
$ ip link set veth0.1 down
$ ip link set veth0.1 master team0
team0: Port device veth0.1 added
$ ip link set veth0 down
$ ip link set veth0 master team0
============================================
WARNING: possible recursive locking detected
6.13.0-rc2-virtme-00441-ga14a429069bb #46 Not tainted
--------------------------------------------
ip/7684 is trying to acquire lock:
ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
but task is already holding lock:
ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_add_slave (drivers/net/team/team_core.c:1147 drivers/net/team/team_core.c:1977)
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(team->team_lock_key);
lock(team->team_lock_key);
*** DEADLOCK ***
May be due to missing lock nesting notation
2 locks held by ip/7684:
stack backtrace:
CPU: 3 UID: 0 PID: 7684 Comm: ip Not tainted 6.13.0-rc2-virtme-00441-ga14a429069bb #46
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:122)
print_deadlock_bug.cold (kernel/locking/lockdep.c:3040)
__lock_acquire (kernel/locking/lockdep.c:3893 kernel/locking/lockdep.c:5226)
? netlink_broadcast_filtered (net/netlink/af_netlink.c:1548)
lock_acquire.part.0 (kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5851)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? trace_lock_acquire (./include/trace/events/lock.h:24 (discriminator 2))
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? lock_acquire (kernel/locking/lockdep.c:5822)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
__mutex_lock (kernel/locking/mutex.c:587 kernel/locking/mutex.c:735)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? fib_sync_up (net/ipv4/fib_semantics.c:2167)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
notifier_call_chain (kernel/notifier.c:85)
call_netdevice_notifiers_info (net/core/dev.c:1996)
__dev_notify_flags (net/core/dev.c:8993)
? __dev_change_flags (net/core/dev.c:8975)
dev_change_flags (net/core/dev.c:9027)
vlan_device_event (net/8021q/vlan.c:85 net/8021q/vlan.c:470)
? br_device_event (net/bridge/br.c:143)
notifier_call_chain (kernel/notifier.c:85)
call_netdevice_notifiers_info (net/core/dev.c:1996)
dev_open (net/core/dev.c:1519 net/core/dev.c:1505)
team_add_slave (drivers/net/team/team_core.c:1219 drivers/net/team/team_core.c:1977)
? __pfx_team_add_slave (drivers/net/team/team_core.c:1972)
do_set_master (net/core/rtnetlink.c:2917)
do_setlink.isra.0 (net/core/rtnetlink.c:3117) |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_tcm: Don't free command immediately
Don't prematurely free the command. Wait for the status completion of
the sense status. It can be freed then. Otherwise we will double-free
the command. |
| In the Linux kernel, the following vulnerability has been resolved:
memory: tegra20-emc: fix an OF node reference bug in tegra_emc_find_node_by_ram_code()
As of_find_node_by_name() release the reference of the argument device
node, tegra_emc_find_node_by_ram_code() releases some device nodes while
still in use, resulting in possible UAFs. According to the bindings and
the in-tree DTS files, the "emc-tables" node is always device's child
node with the property "nvidia,use-ram-code", and the "lpddr2" node is a
child of the "emc-tables" node. Thus utilize the
for_each_child_of_node() macro and of_get_child_by_name() instead of
of_find_node_by_name() to simplify the code.
This bug was found by an experimental verification tool that I am
developing.
[krzysztof: applied v1, adjust the commit msg to incorporate v2 parts] |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix slab-use-after-free Read in mgmt_remove_adv_monitor_sync
This fixes the following crash:
==================================================================
BUG: KASAN: slab-use-after-free in mgmt_remove_adv_monitor_sync+0x3a/0xd0 net/bluetooth/mgmt.c:5543
Read of size 8 at addr ffff88814128f898 by task kworker/u9:4/5961
CPU: 1 UID: 0 PID: 5961 Comm: kworker/u9:4 Not tainted 6.12.0-syzkaller-10684-gf1cd565ce577 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
mgmt_remove_adv_monitor_sync+0x3a/0xd0 net/bluetooth/mgmt.c:5543
hci_cmd_sync_work+0x22b/0x400 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa63/0x1850 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 16026:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4314
kmalloc_noprof include/linux/slab.h:901 [inline]
kzalloc_noprof include/linux/slab.h:1037 [inline]
mgmt_pending_new+0x65/0x250 net/bluetooth/mgmt_util.c:269
mgmt_pending_add+0x36/0x120 net/bluetooth/mgmt_util.c:296
remove_adv_monitor+0x102/0x1b0 net/bluetooth/mgmt.c:5568
hci_mgmt_cmd+0xc47/0x11d0 net/bluetooth/hci_sock.c:1712
hci_sock_sendmsg+0x7b8/0x11c0 net/bluetooth/hci_sock.c:1832
sock_sendmsg_nosec net/socket.c:711 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:726
sock_write_iter+0x2d7/0x3f0 net/socket.c:1147
new_sync_write fs/read_write.c:586 [inline]
vfs_write+0xaeb/0xd30 fs/read_write.c:679
ksys_write+0x18f/0x2b0 fs/read_write.c:731
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 16022:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2338 [inline]
slab_free mm/slub.c:4598 [inline]
kfree+0x196/0x420 mm/slub.c:4746
mgmt_pending_foreach+0xd1/0x130 net/bluetooth/mgmt_util.c:259
__mgmt_power_off+0x183/0x430 net/bluetooth/mgmt.c:9550
hci_dev_close_sync+0x6c4/0x11c0 net/bluetooth/hci_sync.c:5208
hci_dev_do_close net/bluetooth/hci_core.c:483 [inline]
hci_dev_close+0x112/0x210 net/bluetooth/hci_core.c:508
sock_do_ioctl+0x158/0x460 net/socket.c:1209
sock_ioctl+0x626/0x8e0 net/socket.c:1328
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Remove dangling pointers
When an async control is written, we copy a pointer to the file handle
that started the operation. That pointer will be used when the device is
done. Which could be anytime in the future.
If the user closes that file descriptor, its structure will be freed,
and there will be one dangling pointer per pending async control, that
the driver will try to use.
Clean all the dangling pointers during release().
To avoid adding a performance penalty in the most common case (no async
operation), a counter has been introduced with some logic to make sure
that it is properly handled. |
| In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Fix double free in error path
If the uvc_status_init() function fails to allocate the int_urb, it will
free the dev->status pointer but doesn't reset the pointer to NULL. This
results in the kfree() call in uvc_status_cleanup() trying to
double-free the memory. Fix it by resetting the dev->status pointer to
NULL after freeing it.
Reviewed by: Ricardo Ribalda <ribalda@chromium.org> |
| In the Linux kernel, the following vulnerability has been resolved:
pps: Fix a use-after-free
On a board running ntpd and gpsd, I'm seeing a consistent use-after-free
in sys_exit() from gpsd when rebooting:
pps pps1: removed
------------[ cut here ]------------
kobject: '(null)' (00000000db4bec24): is not initialized, yet kobject_put() is being called.
WARNING: CPU: 2 PID: 440 at lib/kobject.c:734 kobject_put+0x120/0x150
CPU: 2 UID: 299 PID: 440 Comm: gpsd Not tainted 6.11.0-rc6-00308-gb31c44928842 #1
Hardware name: Raspberry Pi 4 Model B Rev 1.1 (DT)
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : kobject_put+0x120/0x150
lr : kobject_put+0x120/0x150
sp : ffffffc0803d3ae0
x29: ffffffc0803d3ae0 x28: ffffff8042dc9738 x27: 0000000000000001
x26: 0000000000000000 x25: ffffff8042dc9040 x24: ffffff8042dc9440
x23: ffffff80402a4620 x22: ffffff8042ef4bd0 x21: ffffff80405cb600
x20: 000000000008001b x19: ffffff8040b3b6e0 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 696e6920746f6e20
x14: 7369203a29343263 x13: 205d303434542020 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
kobject_put+0x120/0x150
cdev_put+0x20/0x3c
__fput+0x2c4/0x2d8
____fput+0x1c/0x38
task_work_run+0x70/0xfc
do_exit+0x2a0/0x924
do_group_exit+0x34/0x90
get_signal+0x7fc/0x8c0
do_signal+0x128/0x13b4
do_notify_resume+0xdc/0x160
el0_svc+0xd4/0xf8
el0t_64_sync_handler+0x140/0x14c
el0t_64_sync+0x190/0x194
---[ end trace 0000000000000000 ]---
...followed by more symptoms of corruption, with similar stacks:
refcount_t: underflow; use-after-free.
kernel BUG at lib/list_debug.c:62!
Kernel panic - not syncing: Oops - BUG: Fatal exception
This happens because pps_device_destruct() frees the pps_device with the
embedded cdev immediately after calling cdev_del(), but, as the comment
above cdev_del() notes, fops for previously opened cdevs are still
callable even after cdev_del() returns. I think this bug has always
been there: I can't explain why it suddenly started happening every time
I reboot this particular board.
In commit d953e0e837e6 ("pps: Fix a use-after free bug when
unregistering a source."), George Spelvin suggested removing the
embedded cdev. That seems like the simplest way to fix this, so I've
implemented his suggestion, using __register_chrdev() with pps_idr
becoming the source of truth for which minor corresponds to which
device.
But now that pps_idr defines userspace visibility instead of cdev_add(),
we need to be sure the pps->dev refcount can't reach zero while
userspace can still find it again. So, the idr_remove() call moves to
pps_unregister_cdev(), and pps_idr now holds a reference to pps->dev.
pps_core: source serial1 got cdev (251:1)
<...>
pps pps1: removed
pps_core: unregistering pps1
pps_core: deallocating pps1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: bsg: Set bsg_queue to NULL after removal
Currently, this does not cause any issues, but I believe it is necessary to
set bsg_queue to NULL after removing it to prevent potential use-after-free
(UAF) access. |
| In the Linux kernel, the following vulnerability has been resolved:
block, bfq: fix bfqq uaf in bfq_limit_depth()
Set new allocated bfqq to bic or remove freed bfqq from bic are both
protected by bfqd->lock, however bfq_limit_depth() is deferencing bfqq
from bic without the lock, this can lead to UAF if the io_context is
shared by multiple tasks.
For example, test bfq with io_uring can trigger following UAF in v6.6:
==================================================================
BUG: KASAN: slab-use-after-free in bfqq_group+0x15/0x50
Call Trace:
<TASK>
dump_stack_lvl+0x47/0x80
print_address_description.constprop.0+0x66/0x300
print_report+0x3e/0x70
kasan_report+0xb4/0xf0
bfqq_group+0x15/0x50
bfqq_request_over_limit+0x130/0x9a0
bfq_limit_depth+0x1b5/0x480
__blk_mq_alloc_requests+0x2b5/0xa00
blk_mq_get_new_requests+0x11d/0x1d0
blk_mq_submit_bio+0x286/0xb00
submit_bio_noacct_nocheck+0x331/0x400
__block_write_full_folio+0x3d0/0x640
writepage_cb+0x3b/0xc0
write_cache_pages+0x254/0x6c0
write_cache_pages+0x254/0x6c0
do_writepages+0x192/0x310
filemap_fdatawrite_wbc+0x95/0xc0
__filemap_fdatawrite_range+0x99/0xd0
filemap_write_and_wait_range.part.0+0x4d/0xa0
blkdev_read_iter+0xef/0x1e0
io_read+0x1b6/0x8a0
io_issue_sqe+0x87/0x300
io_wq_submit_work+0xeb/0x390
io_worker_handle_work+0x24d/0x550
io_wq_worker+0x27f/0x6c0
ret_from_fork_asm+0x1b/0x30
</TASK>
Allocated by task 808602:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_slab_alloc+0x83/0x90
kmem_cache_alloc_node+0x1b1/0x6d0
bfq_get_queue+0x138/0xfa0
bfq_get_bfqq_handle_split+0xe3/0x2c0
bfq_init_rq+0x196/0xbb0
bfq_insert_request.isra.0+0xb5/0x480
bfq_insert_requests+0x156/0x180
blk_mq_insert_request+0x15d/0x440
blk_mq_submit_bio+0x8a4/0xb00
submit_bio_noacct_nocheck+0x331/0x400
__blkdev_direct_IO_async+0x2dd/0x330
blkdev_write_iter+0x39a/0x450
io_write+0x22a/0x840
io_issue_sqe+0x87/0x300
io_wq_submit_work+0xeb/0x390
io_worker_handle_work+0x24d/0x550
io_wq_worker+0x27f/0x6c0
ret_from_fork+0x2d/0x50
ret_from_fork_asm+0x1b/0x30
Freed by task 808589:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x27/0x40
__kasan_slab_free+0x126/0x1b0
kmem_cache_free+0x10c/0x750
bfq_put_queue+0x2dd/0x770
__bfq_insert_request.isra.0+0x155/0x7a0
bfq_insert_request.isra.0+0x122/0x480
bfq_insert_requests+0x156/0x180
blk_mq_dispatch_plug_list+0x528/0x7e0
blk_mq_flush_plug_list.part.0+0xe5/0x590
__blk_flush_plug+0x3b/0x90
blk_finish_plug+0x40/0x60
do_writepages+0x19d/0x310
filemap_fdatawrite_wbc+0x95/0xc0
__filemap_fdatawrite_range+0x99/0xd0
filemap_write_and_wait_range.part.0+0x4d/0xa0
blkdev_read_iter+0xef/0x1e0
io_read+0x1b6/0x8a0
io_issue_sqe+0x87/0x300
io_wq_submit_work+0xeb/0x390
io_worker_handle_work+0x24d/0x550
io_wq_worker+0x27f/0x6c0
ret_from_fork+0x2d/0x50
ret_from_fork_asm+0x1b/0x30
Fix the problem by protecting bic_to_bfqq() with bfqd->lock. |
| In the Linux kernel, the following vulnerability has been resolved:
i3c: master: cdns: Fix use after free vulnerability in cdns_i3c_master Driver Due to Race Condition
In the cdns_i3c_master_probe function, &master->hj_work is bound with
cdns_i3c_master_hj. And cdns_i3c_master_interrupt can call
cnds_i3c_master_demux_ibis function to start the work.
If we remove the module which will call cdns_i3c_master_remove to
make cleanup, it will free master->base through i3c_master_unregister
while the work mentioned above will be used. The sequence of operations
that may lead to a UAF bug is as follows:
CPU0 CPU1
| cdns_i3c_master_hj
cdns_i3c_master_remove |
i3c_master_unregister(&master->base) |
device_unregister(&master->dev) |
device_release |
//free master->base |
| i3c_master_do_daa(&master->base)
| //use master->base
Fix it by ensuring that the work is canceled before proceeding with
the cleanup in cdns_i3c_master_remove. |