Search

Search Results (325042 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68364 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: ocfs2: relax BUG() to ocfs2_error() in __ocfs2_move_extent() In '__ocfs2_move_extent()', relax 'BUG()' to 'ocfs2_error()' just to avoid crashing the whole kernel due to a filesystem corruption.
CVE-2025-68374 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md: fix rcu protection in md_wakeup_thread We attempted to use RCU to protect the pointer 'thread', but directly passed the value when calling md_wakeup_thread(). This means that the RCU pointer has been acquired before rcu_read_lock(), which renders rcu_read_lock() ineffective and could lead to a use-after-free.
CVE-2025-68726 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: aead - Fix reqsize handling Commit afddce13ce81d ("crypto: api - Add reqsize to crypto_alg") introduced cra_reqsize field in crypto_alg struct to replace type specific reqsize fields. It looks like this was introduced specifically for ahash and acomp from the commit description as subsequent commits add necessary changes in these alg frameworks. However, this is being recommended for use in all crypto algs instead of setting reqsize using crypto_*_set_reqsize(). Using cra_reqsize in aead algorithms, hence, causes memory corruptions and crashes as the underlying functions in the algorithm framework have not been updated to set the reqsize properly from cra_reqsize. [1] Add proper set_reqsize calls in the aead init function to properly initialize reqsize for these algorithms in the framework. [1]: https://gist.github.com/Pratham-T/24247446f1faf4b7843e4014d5089f6b
CVE-2023-54063 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fix OOB read in indx_insert_into_buffer Syzbot reported a OOB read bug: BUG: KASAN: slab-out-of-bounds in indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755 Read of size 17168 at addr ffff8880255e06c0 by task syz-executor308/3630 Call Trace: <TASK> memmove+0x25/0x60 mm/kasan/shadow.c:54 indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755 indx_insert_entry+0x446/0x6b0 fs/ntfs3/index.c:1863 ntfs_create_inode+0x1d3f/0x35c0 fs/ntfs3/inode.c:1548 ntfs_create+0x3e/0x60 fs/ntfs3/namei.c:100 lookup_open fs/namei.c:3413 [inline] If the member struct INDEX_BUFFER *index of struct indx_node is incorrect, that is, the value of __le32 used is greater than the value of __le32 total in struct INDEX_HDR. Therefore, OOB read occurs when memmove is called in indx_insert_into_buffer(). Fix this by adding a check in hdr_find_e().
CVE-2023-54077 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fix memory leak if ntfs_read_mft failed Label ATTR_ROOT in ntfs_read_mft() sets is_root = true and ni->ni_flags |= NI_FLAG_DIR, then next attr will goto label ATTR_ALLOC and alloc ni->dir.alloc_run. However two states are not always consistent and can make memory leak. 1) attr_name in ATTR_ROOT does not fit the condition it will set is_root = true but NI_FLAG_DIR is not set. 2) next attr_name in ATTR_ALLOC fits the condition and alloc ni->dir.alloc_run 3) in cleanup function ni_clear(), when NI_FLAG_DIR is set, it frees ni->dir.alloc_run, otherwise it frees ni->file.run 4) because NI_FLAG_DIR is not set in this case, ni->dir.alloc_run is leaked as kmemleak reported: unreferenced object 0xffff888003bc5480 (size 64): backtrace: [<000000003d42e6b0>] __kmalloc_node+0x4e/0x1c0 [<00000000d8e19b8a>] kvmalloc_node+0x39/0x1f0 [<00000000fc3eb5b8>] run_add_entry+0x18a/0xa40 [ntfs3] [<0000000011c9f978>] run_unpack+0x75d/0x8e0 [ntfs3] [<00000000e7cf1819>] run_unpack_ex+0xbc/0x500 [ntfs3] [<00000000bbf0a43d>] ntfs_iget5+0xb25/0x2dd0 [ntfs3] [<00000000a6e50693>] ntfs_fill_super+0x218d/0x3580 [ntfs3] [<00000000b9170608>] get_tree_bdev+0x3fb/0x710 [<000000004833798a>] vfs_get_tree+0x8e/0x280 [<000000006e20b8e6>] path_mount+0xf3c/0x1930 [<000000007bf15a5f>] do_mount+0xf3/0x110 ... Fix this by always setting is_root and NI_FLAG_DIR together.
CVE-2023-54090 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ixgbe: Fix panic during XDP_TX with > 64 CPUs Commit 4fe815850bdc ("ixgbe: let the xdpdrv work with more than 64 cpus") adds support to allow XDP programs to run on systems with more than 64 CPUs by locking the XDP TX rings and indexing them using cpu % 64 (IXGBE_MAX_XDP_QS). Upon trying this out patch on a system with more than 64 cores, the kernel paniced with an array-index-out-of-bounds at the return in ixgbe_determine_xdp_ring in ixgbe.h, which means ixgbe_determine_xdp_q_idx was just returning the cpu instead of cpu % IXGBE_MAX_XDP_QS. An example splat: ========================================================================== UBSAN: array-index-out-of-bounds in /var/lib/dkms/ixgbe/5.18.6+focal-1/build/src/ixgbe.h:1147:26 index 65 is out of range for type 'ixgbe_ring *[64]' ========================================================================== BUG: kernel NULL pointer dereference, address: 0000000000000058 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] SMP NOPTI CPU: 65 PID: 408 Comm: ksoftirqd/65 Tainted: G IOE 5.15.0-48-generic #54~20.04.1-Ubuntu Hardware name: Dell Inc. PowerEdge R640/0W23H8, BIOS 2.5.4 01/13/2020 RIP: 0010:ixgbe_xmit_xdp_ring+0x1b/0x1c0 [ixgbe] Code: 3b 52 d4 cf e9 42 f2 ff ff 66 0f 1f 44 00 00 0f 1f 44 00 00 55 b9 00 00 00 00 48 89 e5 41 57 41 56 41 55 41 54 53 48 83 ec 08 <44> 0f b7 47 58 0f b7 47 5a 0f b7 57 54 44 0f b7 76 08 66 41 39 c0 RSP: 0018:ffffbc3fcd88fcb0 EFLAGS: 00010282 RAX: ffff92a253260980 RBX: ffffbc3fe68b00a0 RCX: 0000000000000000 RDX: ffff928b5f659000 RSI: ffff928b5f659000 RDI: 0000000000000000 RBP: ffffbc3fcd88fce0 R08: ffff92b9dfc20580 R09: 0000000000000001 R10: 3d3d3d3d3d3d3d3d R11: 3d3d3d3d3d3d3d3d R12: 0000000000000000 R13: ffff928b2f0fa8c0 R14: ffff928b9be20050 R15: 000000000000003c FS: 0000000000000000(0000) GS:ffff92b9dfc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000058 CR3: 000000011dd6a002 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> ixgbe_poll+0x103e/0x1280 [ixgbe] ? sched_clock_cpu+0x12/0xe0 __napi_poll+0x30/0x160 net_rx_action+0x11c/0x270 __do_softirq+0xda/0x2ee run_ksoftirqd+0x2f/0x50 smpboot_thread_fn+0xb7/0x150 ? sort_range+0x30/0x30 kthread+0x127/0x150 ? set_kthread_struct+0x50/0x50 ret_from_fork+0x1f/0x30 </TASK> I think this is how it happens: Upon loading the first XDP program on a system with more than 64 CPUs, ixgbe_xdp_locking_key is incremented in ixgbe_xdp_setup. However, immediately after this, the rings are reconfigured by ixgbe_setup_tc. ixgbe_setup_tc calls ixgbe_clear_interrupt_scheme which calls ixgbe_free_q_vectors which calls ixgbe_free_q_vector in a loop. ixgbe_free_q_vector decrements ixgbe_xdp_locking_key once per call if it is non-zero. Commenting out the decrement in ixgbe_free_q_vector stopped my system from panicing. I suspect to make the original patch work, I would need to load an XDP program and then replace it in order to get ixgbe_xdp_locking_key back above 0 since ixgbe_setup_tc is only called when transitioning between XDP and non-XDP ring configurations, while ixgbe_xdp_locking_key is incremented every time ixgbe_xdp_setup is called. Also, ixgbe_setup_tc can be called via ethtool --set-channels, so this becomes another path to decrement ixgbe_xdp_locking_key to 0 on systems with more than 64 CPUs. Since ixgbe_xdp_locking_key only protects the XDP_TX path and is tied to the number of CPUs present, there is no reason to disable it upon unloading an XDP program. To avoid confusion, I have moved enabling ixgbe_xdp_locking_key into ixgbe_sw_init, which is part of the probe path.
CVE-2022-50719 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: line6: fix stack overflow in line6_midi_transmit Correctly calculate available space including the size of the chunk buffer. This fixes a buffer overflow when multiple MIDI sysex messages are sent to a PODxt device.
CVE-2022-50748 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipc: mqueue: fix possible memory leak in init_mqueue_fs() commit db7cfc380900 ("ipc: Free mq_sysctls if ipc namespace creation failed") Here's a similar memory leak to the one fixed by the patch above. retire_mq_sysctls need to be called when init_mqueue_fs fails after setup_mq_sysctls.
CVE-2023-54099 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: Protect reconfiguration of sb read-write from racing writes The reconfigure / remount code takes a lot of effort to protect filesystem's reconfiguration code from racing writes on remounting read-only. However during remounting read-only filesystem to read-write mode userspace writes can start immediately once we clear SB_RDONLY flag. This is inconvenient for example for ext4 because we need to do some writes to the filesystem (such as preparation of quota files) before we can take userspace writes so we are clearing SB_RDONLY flag before we are fully ready to accept userpace writes and syzbot has found a way to exploit this [1]. Also as far as I'm reading the code the filesystem remount code was protected from racing writes in the legacy mount path by the mount's MNT_READONLY flag so this is relatively new problem. It is actually fairly easy to protect remount read-write from racing writes using sb->s_readonly_remount flag so let's just do that instead of having to workaround these races in the filesystem code. [1] https://lore.kernel.org/all/00000000000006a0df05f6667499@google.com/T/
CVE-2023-54102 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Prevent lpfc_debugfs_lockstat_write() buffer overflow A static code analysis tool flagged the possibility of buffer overflow when using copy_from_user() for a debugfs entry. Currently, it is possible that copy_from_user() copies more bytes than what would fit in the mybuf char array. Add a min() restriction check between sizeof(mybuf) - 1 and nbytes passed from the userspace buffer to protect against buffer overflow.
CVE-2023-54047 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/rockchip: dw_hdmi: cleanup drm encoder during unbind This fixes a use-after-free crash during rmmod. The DRM encoder is embedded inside the larger rockchip_hdmi, which is allocated with the component. The component memory gets freed before the main drm device is destroyed. Fix it by running encoder cleanup before tearing down its container. [moved encoder cleanup above clk_disable, similar to bind-error-path]
CVE-2023-54050 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ubifs: Fix memleak when insert_old_idx() failed Following process will cause a memleak for copied up znode: dirty_cow_znode zn = copy_znode(c, znode); err = insert_old_idx(c, zbr->lnum, zbr->offs); if (unlikely(err)) return ERR_PTR(err); // No one refers to zn. Fetch a reproducer in [Link]. Function copy_znode() is split into 2 parts: resource allocation and znode replacement, insert_old_idx() is split in similar way, so resource cleanup could be done in error handling path without corrupting metadata(mem & disk). It's okay that old index inserting is put behind of add_idx_dirt(), old index is used in layout_leb_in_gaps(), so the two processes do not depend on each other.
CVE-2023-54064 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipmi:ssif: Fix a memory leak when scanning for an adapter The adapter scan ssif_info_find() sets info->adapter_name if the adapter info came from SMBIOS, as it's not set in that case. However, this function can be called more than once, and it will leak the adapter name if it had already been set. So check for NULL before setting it.
CVE-2023-54105 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: isotp: check CAN address family in isotp_bind() Add missing check to block non-AF_CAN binds. Syzbot created some code which matched the right sockaddr struct size but used AF_XDP (0x2C) instead of AF_CAN (0x1D) in the address family field: bind$xdp(r2, &(0x7f0000000540)={0x2c, 0x0, r4, 0x0, r2}, 0x10) ^^^^ This has no funtional impact but the userspace should be notified about the wrong address family field content.
CVE-2023-54111 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: pinctrl: rockchip: Fix refcount leak in rockchip_pinctrl_parse_groups of_find_node_by_phandle() returns a node pointer with refcount incremented, We should use of_node_put() on it when not needed anymore. Add missing of_node_put() to avoid refcount leak.
CVE-2023-54100 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: qedi: Fix use after free bug in qedi_remove() In qedi_probe() we call __qedi_probe() which initializes &qedi->recovery_work with qedi_recovery_handler() and &qedi->board_disable_work with qedi_board_disable_work(). When qedi_schedule_recovery_handler() is called, schedule_delayed_work() will finally start the work. In qedi_remove(), which is called to remove the driver, the following sequence may be observed: Fix this by finishing the work before cleanup in qedi_remove(). CPU0 CPU1 |qedi_recovery_handler qedi_remove | __qedi_remove | iscsi_host_free | scsi_host_put | //free shost | |iscsi_host_for_each_session |//use qedi->shost Cancel recovery_work and board_disable_work in __qedi_remove().
CVE-2023-54112 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: kcm: Fix memory leak in error path of kcm_sendmsg() syzbot reported a memory leak like below: BUG: memory leak unreferenced object 0xffff88810b088c00 (size 240): comm "syz-executor186", pid 5012, jiffies 4294943306 (age 13.680s) hex dump (first 32 bytes): 00 89 08 0b 81 88 ff ff 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff83e5d5ff>] __alloc_skb+0x1ef/0x230 net/core/skbuff.c:634 [<ffffffff84606e59>] alloc_skb include/linux/skbuff.h:1289 [inline] [<ffffffff84606e59>] kcm_sendmsg+0x269/0x1050 net/kcm/kcmsock.c:815 [<ffffffff83e479c6>] sock_sendmsg_nosec net/socket.c:725 [inline] [<ffffffff83e479c6>] sock_sendmsg+0x56/0xb0 net/socket.c:748 [<ffffffff83e47f55>] ____sys_sendmsg+0x365/0x470 net/socket.c:2494 [<ffffffff83e4c389>] ___sys_sendmsg+0xc9/0x130 net/socket.c:2548 [<ffffffff83e4c536>] __sys_sendmsg+0xa6/0x120 net/socket.c:2577 [<ffffffff84ad7bb8>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff84ad7bb8>] do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80 [<ffffffff84c0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd In kcm_sendmsg(), kcm_tx_msg(head)->last_skb is used as a cursor to append newly allocated skbs to 'head'. If some bytes are copied, an error occurred, and jumped to out_error label, 'last_skb' is left unmodified. A later kcm_sendmsg() will use an obsoleted 'last_skb' reference, corrupting the 'head' frag_list and causing the leak. This patch fixes this issue by properly updating the last allocated skb in 'last_skb'.
CVE-2023-54128 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: drop peer group ids under namespace lock When cleaning up peer group ids in the failure path we need to make sure to hold on to the namespace lock. Otherwise another thread might just turn the mount from a shared into a non-shared mount concurrently.
CVE-2023-54131 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rt2x00: Fix memory leak when handling surveys When removing a rt2x00 device, its associated channel surveys are not freed, causing a memory leak observable with kmemleak: unreferenced object 0xffff9620f0881a00 (size 512): comm "systemd-udevd", pid 2290, jiffies 4294906974 (age 33.768s) hex dump (first 32 bytes): 70 44 12 00 00 00 00 00 92 8a 00 00 00 00 00 00 pD.............. 00 00 00 00 00 00 00 00 ab 87 01 00 00 00 00 00 ................ backtrace: [<ffffffffb0ed858b>] __kmalloc+0x4b/0x130 [<ffffffffc1b0f29b>] rt2800_probe_hw+0xc2b/0x1380 [rt2800lib] [<ffffffffc1a9496e>] rt2800usb_probe_hw+0xe/0x60 [rt2800usb] [<ffffffffc1ae491a>] rt2x00lib_probe_dev+0x21a/0x7d0 [rt2x00lib] [<ffffffffc1b3b83e>] rt2x00usb_probe+0x1be/0x980 [rt2x00usb] [<ffffffffc05981e2>] usb_probe_interface+0xe2/0x310 [usbcore] [<ffffffffb13be2d5>] really_probe+0x1a5/0x410 [<ffffffffb13be5c8>] __driver_probe_device+0x78/0x180 [<ffffffffb13be6fe>] driver_probe_device+0x1e/0x90 [<ffffffffb13be972>] __driver_attach+0xd2/0x1c0 [<ffffffffb13bbc57>] bus_for_each_dev+0x77/0xd0 [<ffffffffb13bd2a2>] bus_add_driver+0x112/0x210 [<ffffffffb13bfc6c>] driver_register+0x5c/0x120 [<ffffffffc0596ae8>] usb_register_driver+0x88/0x150 [usbcore] [<ffffffffb0c011c4>] do_one_initcall+0x44/0x220 [<ffffffffb0d6134c>] do_init_module+0x4c/0x220 Fix this by freeing the channel surveys on device removal. Tested with a RT3070 based USB wireless adapter.
CVE-2025-68375 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86: Fix NULL event access and potential PEBS record loss When intel_pmu_drain_pebs_icl() is called to drain PEBS records, the perf_event_overflow() could be called to process the last PEBS record. While perf_event_overflow() could trigger the interrupt throttle and stop all events of the group, like what the below call-chain shows. perf_event_overflow() -> __perf_event_overflow() ->__perf_event_account_interrupt() -> perf_event_throttle_group() -> perf_event_throttle() -> event->pmu->stop() -> x86_pmu_stop() The side effect of stopping the events is that all corresponding event pointers in cpuc->events[] array are cleared to NULL. Assume there are two PEBS events (event a and event b) in a group. When intel_pmu_drain_pebs_icl() calls perf_event_overflow() to process the last PEBS record of PEBS event a, interrupt throttle is triggered and all pointers of event a and event b are cleared to NULL. Then intel_pmu_drain_pebs_icl() tries to process the last PEBS record of event b and encounters NULL pointer access. To avoid this issue, move cpuc->events[] clearing from x86_pmu_stop() to x86_pmu_del(). It's safe since cpuc->active_mask or cpuc->pebs_enabled is always checked before access the event pointer from cpuc->events[].