| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: relax BUG() to ocfs2_error() in __ocfs2_move_extent()
In '__ocfs2_move_extent()', relax 'BUG()' to 'ocfs2_error()' just
to avoid crashing the whole kernel due to a filesystem corruption. |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix rcu protection in md_wakeup_thread
We attempted to use RCU to protect the pointer 'thread', but directly
passed the value when calling md_wakeup_thread(). This means that the
RCU pointer has been acquired before rcu_read_lock(), which renders
rcu_read_lock() ineffective and could lead to a use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: aead - Fix reqsize handling
Commit afddce13ce81d ("crypto: api - Add reqsize to crypto_alg")
introduced cra_reqsize field in crypto_alg struct to replace type
specific reqsize fields. It looks like this was introduced specifically
for ahash and acomp from the commit description as subsequent commits
add necessary changes in these alg frameworks.
However, this is being recommended for use in all crypto algs
instead of setting reqsize using crypto_*_set_reqsize(). Using
cra_reqsize in aead algorithms, hence, causes memory corruptions and
crashes as the underlying functions in the algorithm framework have not
been updated to set the reqsize properly from cra_reqsize. [1]
Add proper set_reqsize calls in the aead init function to properly
initialize reqsize for these algorithms in the framework.
[1]: https://gist.github.com/Pratham-T/24247446f1faf4b7843e4014d5089f6b |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix OOB read in indx_insert_into_buffer
Syzbot reported a OOB read bug:
BUG: KASAN: slab-out-of-bounds in indx_insert_into_buffer+0xaa3/0x13b0
fs/ntfs3/index.c:1755
Read of size 17168 at addr ffff8880255e06c0 by task syz-executor308/3630
Call Trace:
<TASK>
memmove+0x25/0x60 mm/kasan/shadow.c:54
indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755
indx_insert_entry+0x446/0x6b0 fs/ntfs3/index.c:1863
ntfs_create_inode+0x1d3f/0x35c0 fs/ntfs3/inode.c:1548
ntfs_create+0x3e/0x60 fs/ntfs3/namei.c:100
lookup_open fs/namei.c:3413 [inline]
If the member struct INDEX_BUFFER *index of struct indx_node is
incorrect, that is, the value of __le32 used is greater than the value
of __le32 total in struct INDEX_HDR. Therefore, OOB read occurs when
memmove is called in indx_insert_into_buffer().
Fix this by adding a check in hdr_find_e(). |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix memory leak if ntfs_read_mft failed
Label ATTR_ROOT in ntfs_read_mft() sets is_root = true and
ni->ni_flags |= NI_FLAG_DIR, then next attr will goto label ATTR_ALLOC
and alloc ni->dir.alloc_run. However two states are not always
consistent and can make memory leak.
1) attr_name in ATTR_ROOT does not fit the condition it will set
is_root = true but NI_FLAG_DIR is not set.
2) next attr_name in ATTR_ALLOC fits the condition and alloc
ni->dir.alloc_run
3) in cleanup function ni_clear(), when NI_FLAG_DIR is set, it frees
ni->dir.alloc_run, otherwise it frees ni->file.run
4) because NI_FLAG_DIR is not set in this case, ni->dir.alloc_run is
leaked as kmemleak reported:
unreferenced object 0xffff888003bc5480 (size 64):
backtrace:
[<000000003d42e6b0>] __kmalloc_node+0x4e/0x1c0
[<00000000d8e19b8a>] kvmalloc_node+0x39/0x1f0
[<00000000fc3eb5b8>] run_add_entry+0x18a/0xa40 [ntfs3]
[<0000000011c9f978>] run_unpack+0x75d/0x8e0 [ntfs3]
[<00000000e7cf1819>] run_unpack_ex+0xbc/0x500 [ntfs3]
[<00000000bbf0a43d>] ntfs_iget5+0xb25/0x2dd0 [ntfs3]
[<00000000a6e50693>] ntfs_fill_super+0x218d/0x3580 [ntfs3]
[<00000000b9170608>] get_tree_bdev+0x3fb/0x710
[<000000004833798a>] vfs_get_tree+0x8e/0x280
[<000000006e20b8e6>] path_mount+0xf3c/0x1930
[<000000007bf15a5f>] do_mount+0xf3/0x110
...
Fix this by always setting is_root and NI_FLAG_DIR together. |
| In the Linux kernel, the following vulnerability has been resolved:
ixgbe: Fix panic during XDP_TX with > 64 CPUs
Commit 4fe815850bdc ("ixgbe: let the xdpdrv work with more than 64 cpus")
adds support to allow XDP programs to run on systems with more than
64 CPUs by locking the XDP TX rings and indexing them using cpu % 64
(IXGBE_MAX_XDP_QS).
Upon trying this out patch on a system with more than 64 cores,
the kernel paniced with an array-index-out-of-bounds at the return in
ixgbe_determine_xdp_ring in ixgbe.h, which means ixgbe_determine_xdp_q_idx
was just returning the cpu instead of cpu % IXGBE_MAX_XDP_QS. An example
splat:
==========================================================================
UBSAN: array-index-out-of-bounds in
/var/lib/dkms/ixgbe/5.18.6+focal-1/build/src/ixgbe.h:1147:26
index 65 is out of range for type 'ixgbe_ring *[64]'
==========================================================================
BUG: kernel NULL pointer dereference, address: 0000000000000058
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP NOPTI
CPU: 65 PID: 408 Comm: ksoftirqd/65
Tainted: G IOE 5.15.0-48-generic #54~20.04.1-Ubuntu
Hardware name: Dell Inc. PowerEdge R640/0W23H8, BIOS 2.5.4 01/13/2020
RIP: 0010:ixgbe_xmit_xdp_ring+0x1b/0x1c0 [ixgbe]
Code: 3b 52 d4 cf e9 42 f2 ff ff 66 0f 1f 44 00 00 0f 1f 44 00 00 55 b9
00 00 00 00 48 89 e5 41 57 41 56 41 55 41 54 53 48 83 ec 08 <44> 0f b7
47 58 0f b7 47 5a 0f b7 57 54 44 0f b7 76 08 66 41 39 c0
RSP: 0018:ffffbc3fcd88fcb0 EFLAGS: 00010282
RAX: ffff92a253260980 RBX: ffffbc3fe68b00a0 RCX: 0000000000000000
RDX: ffff928b5f659000 RSI: ffff928b5f659000 RDI: 0000000000000000
RBP: ffffbc3fcd88fce0 R08: ffff92b9dfc20580 R09: 0000000000000001
R10: 3d3d3d3d3d3d3d3d R11: 3d3d3d3d3d3d3d3d R12: 0000000000000000
R13: ffff928b2f0fa8c0 R14: ffff928b9be20050 R15: 000000000000003c
FS: 0000000000000000(0000) GS:ffff92b9dfc00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000058 CR3: 000000011dd6a002 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
ixgbe_poll+0x103e/0x1280 [ixgbe]
? sched_clock_cpu+0x12/0xe0
__napi_poll+0x30/0x160
net_rx_action+0x11c/0x270
__do_softirq+0xda/0x2ee
run_ksoftirqd+0x2f/0x50
smpboot_thread_fn+0xb7/0x150
? sort_range+0x30/0x30
kthread+0x127/0x150
? set_kthread_struct+0x50/0x50
ret_from_fork+0x1f/0x30
</TASK>
I think this is how it happens:
Upon loading the first XDP program on a system with more than 64 CPUs,
ixgbe_xdp_locking_key is incremented in ixgbe_xdp_setup. However,
immediately after this, the rings are reconfigured by ixgbe_setup_tc.
ixgbe_setup_tc calls ixgbe_clear_interrupt_scheme which calls
ixgbe_free_q_vectors which calls ixgbe_free_q_vector in a loop.
ixgbe_free_q_vector decrements ixgbe_xdp_locking_key once per call if
it is non-zero. Commenting out the decrement in ixgbe_free_q_vector
stopped my system from panicing.
I suspect to make the original patch work, I would need to load an XDP
program and then replace it in order to get ixgbe_xdp_locking_key back
above 0 since ixgbe_setup_tc is only called when transitioning between
XDP and non-XDP ring configurations, while ixgbe_xdp_locking_key is
incremented every time ixgbe_xdp_setup is called.
Also, ixgbe_setup_tc can be called via ethtool --set-channels, so this
becomes another path to decrement ixgbe_xdp_locking_key to 0 on systems
with more than 64 CPUs.
Since ixgbe_xdp_locking_key only protects the XDP_TX path and is tied
to the number of CPUs present, there is no reason to disable it upon
unloading an XDP program. To avoid confusion, I have moved enabling
ixgbe_xdp_locking_key into ixgbe_sw_init, which is part of the probe path. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: line6: fix stack overflow in line6_midi_transmit
Correctly calculate available space including the size of the chunk
buffer. This fixes a buffer overflow when multiple MIDI sysex
messages are sent to a PODxt device. |
| In the Linux kernel, the following vulnerability has been resolved:
ipc: mqueue: fix possible memory leak in init_mqueue_fs()
commit db7cfc380900 ("ipc: Free mq_sysctls if ipc namespace creation
failed")
Here's a similar memory leak to the one fixed by the patch above.
retire_mq_sysctls need to be called when init_mqueue_fs fails after
setup_mq_sysctls. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: Protect reconfiguration of sb read-write from racing writes
The reconfigure / remount code takes a lot of effort to protect
filesystem's reconfiguration code from racing writes on remounting
read-only. However during remounting read-only filesystem to read-write
mode userspace writes can start immediately once we clear SB_RDONLY
flag. This is inconvenient for example for ext4 because we need to do
some writes to the filesystem (such as preparation of quota files)
before we can take userspace writes so we are clearing SB_RDONLY flag
before we are fully ready to accept userpace writes and syzbot has found
a way to exploit this [1]. Also as far as I'm reading the code
the filesystem remount code was protected from racing writes in the
legacy mount path by the mount's MNT_READONLY flag so this is relatively
new problem. It is actually fairly easy to protect remount read-write
from racing writes using sb->s_readonly_remount flag so let's just do
that instead of having to workaround these races in the filesystem code.
[1] https://lore.kernel.org/all/00000000000006a0df05f6667499@google.com/T/ |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Prevent lpfc_debugfs_lockstat_write() buffer overflow
A static code analysis tool flagged the possibility of buffer overflow when
using copy_from_user() for a debugfs entry.
Currently, it is possible that copy_from_user() copies more bytes than what
would fit in the mybuf char array. Add a min() restriction check between
sizeof(mybuf) - 1 and nbytes passed from the userspace buffer to protect
against buffer overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/rockchip: dw_hdmi: cleanup drm encoder during unbind
This fixes a use-after-free crash during rmmod.
The DRM encoder is embedded inside the larger rockchip_hdmi,
which is allocated with the component. The component memory
gets freed before the main drm device is destroyed. Fix it
by running encoder cleanup before tearing down its container.
[moved encoder cleanup above clk_disable, similar to bind-error-path] |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix memleak when insert_old_idx() failed
Following process will cause a memleak for copied up znode:
dirty_cow_znode
zn = copy_znode(c, znode);
err = insert_old_idx(c, zbr->lnum, zbr->offs);
if (unlikely(err))
return ERR_PTR(err); // No one refers to zn.
Fetch a reproducer in [Link].
Function copy_znode() is split into 2 parts: resource allocation
and znode replacement, insert_old_idx() is split in similar way,
so resource cleanup could be done in error handling path without
corrupting metadata(mem & disk).
It's okay that old index inserting is put behind of add_idx_dirt(),
old index is used in layout_leb_in_gaps(), so the two processes do
not depend on each other. |
| In the Linux kernel, the following vulnerability has been resolved:
ipmi:ssif: Fix a memory leak when scanning for an adapter
The adapter scan ssif_info_find() sets info->adapter_name if the adapter
info came from SMBIOS, as it's not set in that case. However, this
function can be called more than once, and it will leak the adapter name
if it had already been set. So check for NULL before setting it. |
| In the Linux kernel, the following vulnerability has been resolved:
can: isotp: check CAN address family in isotp_bind()
Add missing check to block non-AF_CAN binds.
Syzbot created some code which matched the right sockaddr struct size
but used AF_XDP (0x2C) instead of AF_CAN (0x1D) in the address family
field:
bind$xdp(r2, &(0x7f0000000540)={0x2c, 0x0, r4, 0x0, r2}, 0x10)
^^^^
This has no funtional impact but the userspace should be notified about
the wrong address family field content. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: rockchip: Fix refcount leak in rockchip_pinctrl_parse_groups
of_find_node_by_phandle() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qedi: Fix use after free bug in qedi_remove()
In qedi_probe() we call __qedi_probe() which initializes
&qedi->recovery_work with qedi_recovery_handler() and
&qedi->board_disable_work with qedi_board_disable_work().
When qedi_schedule_recovery_handler() is called, schedule_delayed_work()
will finally start the work.
In qedi_remove(), which is called to remove the driver, the following
sequence may be observed:
Fix this by finishing the work before cleanup in qedi_remove().
CPU0 CPU1
|qedi_recovery_handler
qedi_remove |
__qedi_remove |
iscsi_host_free |
scsi_host_put |
//free shost |
|iscsi_host_for_each_session
|//use qedi->shost
Cancel recovery_work and board_disable_work in __qedi_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
kcm: Fix memory leak in error path of kcm_sendmsg()
syzbot reported a memory leak like below:
BUG: memory leak
unreferenced object 0xffff88810b088c00 (size 240):
comm "syz-executor186", pid 5012, jiffies 4294943306 (age 13.680s)
hex dump (first 32 bytes):
00 89 08 0b 81 88 ff ff 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff83e5d5ff>] __alloc_skb+0x1ef/0x230 net/core/skbuff.c:634
[<ffffffff84606e59>] alloc_skb include/linux/skbuff.h:1289 [inline]
[<ffffffff84606e59>] kcm_sendmsg+0x269/0x1050 net/kcm/kcmsock.c:815
[<ffffffff83e479c6>] sock_sendmsg_nosec net/socket.c:725 [inline]
[<ffffffff83e479c6>] sock_sendmsg+0x56/0xb0 net/socket.c:748
[<ffffffff83e47f55>] ____sys_sendmsg+0x365/0x470 net/socket.c:2494
[<ffffffff83e4c389>] ___sys_sendmsg+0xc9/0x130 net/socket.c:2548
[<ffffffff83e4c536>] __sys_sendmsg+0xa6/0x120 net/socket.c:2577
[<ffffffff84ad7bb8>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff84ad7bb8>] do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80
[<ffffffff84c0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
In kcm_sendmsg(), kcm_tx_msg(head)->last_skb is used as a cursor to append
newly allocated skbs to 'head'. If some bytes are copied, an error occurred,
and jumped to out_error label, 'last_skb' is left unmodified. A later
kcm_sendmsg() will use an obsoleted 'last_skb' reference, corrupting the
'head' frag_list and causing the leak.
This patch fixes this issue by properly updating the last allocated skb in
'last_skb'. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: drop peer group ids under namespace lock
When cleaning up peer group ids in the failure path we need to make sure
to hold on to the namespace lock. Otherwise another thread might just
turn the mount from a shared into a non-shared mount concurrently. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rt2x00: Fix memory leak when handling surveys
When removing a rt2x00 device, its associated channel surveys
are not freed, causing a memory leak observable with kmemleak:
unreferenced object 0xffff9620f0881a00 (size 512):
comm "systemd-udevd", pid 2290, jiffies 4294906974 (age 33.768s)
hex dump (first 32 bytes):
70 44 12 00 00 00 00 00 92 8a 00 00 00 00 00 00 pD..............
00 00 00 00 00 00 00 00 ab 87 01 00 00 00 00 00 ................
backtrace:
[<ffffffffb0ed858b>] __kmalloc+0x4b/0x130
[<ffffffffc1b0f29b>] rt2800_probe_hw+0xc2b/0x1380 [rt2800lib]
[<ffffffffc1a9496e>] rt2800usb_probe_hw+0xe/0x60 [rt2800usb]
[<ffffffffc1ae491a>] rt2x00lib_probe_dev+0x21a/0x7d0 [rt2x00lib]
[<ffffffffc1b3b83e>] rt2x00usb_probe+0x1be/0x980 [rt2x00usb]
[<ffffffffc05981e2>] usb_probe_interface+0xe2/0x310 [usbcore]
[<ffffffffb13be2d5>] really_probe+0x1a5/0x410
[<ffffffffb13be5c8>] __driver_probe_device+0x78/0x180
[<ffffffffb13be6fe>] driver_probe_device+0x1e/0x90
[<ffffffffb13be972>] __driver_attach+0xd2/0x1c0
[<ffffffffb13bbc57>] bus_for_each_dev+0x77/0xd0
[<ffffffffb13bd2a2>] bus_add_driver+0x112/0x210
[<ffffffffb13bfc6c>] driver_register+0x5c/0x120
[<ffffffffc0596ae8>] usb_register_driver+0x88/0x150 [usbcore]
[<ffffffffb0c011c4>] do_one_initcall+0x44/0x220
[<ffffffffb0d6134c>] do_init_module+0x4c/0x220
Fix this by freeing the channel surveys on device removal.
Tested with a RT3070 based USB wireless adapter. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86: Fix NULL event access and potential PEBS record loss
When intel_pmu_drain_pebs_icl() is called to drain PEBS records, the
perf_event_overflow() could be called to process the last PEBS record.
While perf_event_overflow() could trigger the interrupt throttle and
stop all events of the group, like what the below call-chain shows.
perf_event_overflow()
-> __perf_event_overflow()
->__perf_event_account_interrupt()
-> perf_event_throttle_group()
-> perf_event_throttle()
-> event->pmu->stop()
-> x86_pmu_stop()
The side effect of stopping the events is that all corresponding event
pointers in cpuc->events[] array are cleared to NULL.
Assume there are two PEBS events (event a and event b) in a group. When
intel_pmu_drain_pebs_icl() calls perf_event_overflow() to process the
last PEBS record of PEBS event a, interrupt throttle is triggered and
all pointers of event a and event b are cleared to NULL. Then
intel_pmu_drain_pebs_icl() tries to process the last PEBS record of
event b and encounters NULL pointer access.
To avoid this issue, move cpuc->events[] clearing from x86_pmu_stop()
to x86_pmu_del(). It's safe since cpuc->active_mask or
cpuc->pebs_enabled is always checked before access the event pointer
from cpuc->events[]. |