| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability in the Smart Install feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to trigger a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to improper validation of packet data. An attacker could exploit this vulnerability by sending a crafted packet to an affected device on TCP port 4786. Only Smart Install client switches are affected. Cisco devices that are configured as a Smart Install director are not affected by this vulnerability. Cisco Bug IDs: CSCvd40673. |
| A vulnerability in the Bidirectional Forwarding Detection (BFD) offload implementation of Cisco Catalyst 4500 Series Switches and Cisco Catalyst 4500-X Series Switches could allow an unauthenticated, remote attacker to cause a crash of the iosd process, causing a denial of service (DoS) condition. The vulnerability is due to insufficient error handling when the BFD header in a BFD packet is incomplete. An attacker could exploit this vulnerability by sending a crafted BFD message to or across an affected switch. A successful exploit could allow the attacker to trigger a reload of the system. This vulnerability affects Catalyst 4500 Supervisor Engine 6-E (K5), Catalyst 4500 Supervisor Engine 6L-E (K10), Catalyst 4500 Supervisor Engine 7-E (K10), Catalyst 4500 Supervisor Engine 7L-E (K10), Catalyst 4500E Supervisor Engine 8-E (K10), Catalyst 4500E Supervisor Engine 8L-E (K10), Catalyst 4500E Supervisor Engine 9-E (K10), Catalyst 4500-X Series Switches (K10), Catalyst 4900M Switch (K5), Catalyst 4948E Ethernet Switch (K5). Cisco Bug IDs: CSCvc40729. |
| A vulnerability in the crypto engine of the Cisco Integrated Services Module for VPN (ISM-VPN) running Cisco IOS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to insufficient handling of VPN traffic by the affected device. An attacker could exploit this vulnerability by sending crafted VPN traffic to an affected device. A successful exploit could allow the attacker to cause the affected device to hang or crash, resulting in a DoS condition. Cisco Bug IDs: CSCvd39267. |
| A vulnerability in the quality of service (QoS) subsystem of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition or execute arbitrary code with elevated privileges. The vulnerability is due to incorrect bounds checking of certain values in packets that are destined for UDP port 18999 of an affected device. An attacker could exploit this vulnerability by sending malicious packets to an affected device. When the packets are processed, an exploitable buffer overflow condition may occur. A successful exploit could allow the attacker to execute arbitrary code on the affected device with elevated privileges. The attacker could also leverage this vulnerability to cause the device to reload, causing a temporary DoS condition while the device is reloading. The malicious packets must be destined to and processed by an affected device. Traffic transiting a device will not trigger the vulnerability. Cisco Bug IDs: CSCvf73881. |
| A vulnerability in the Border Gateway Protocol (BGP) over an Ethernet Virtual Private Network (EVPN) for Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause the device to reload, resulting in a denial of service (DoS) condition, or potentially corrupt the BGP routing table, which could result in network instability. The vulnerability exists due to changes in the implementation of the BGP MPLS-Based Ethernet VPN RFC (RFC 7432) draft between IOS XE software releases. When the BGP Inclusive Multicast Ethernet Tag Route or BGP EVPN MAC/IP Advertisement Route update packet is received, it could be possible that the IP address length field is miscalculated. An attacker could exploit this vulnerability by sending a crafted BGP packet to an affected device after the BGP session was established. An exploit could allow the attacker to cause the affected device to reload or corrupt the BGP routing table; either outcome would result in a DoS. The vulnerability may be triggered when the router receives a crafted BGP message from a peer on an existing BGP session. This vulnerability affects all releases of Cisco IOS XE Software prior to software release 16.3 that support BGP EVPN configurations. If the device is not configured for EVPN, it is not vulnerable. Cisco Bug IDs: CSCui67191, CSCvg52875. |
| The DHCP relay subsystem of Cisco IOS 12.2 through 15.6 and Cisco IOS XE Software contains a vulnerability that could allow an unauthenticated, remote attacker to execute arbitrary code and gain full control of an affected system. The attacker could also cause an affected system to reload, resulting in a denial of service (DoS) condition. The vulnerability is due to a buffer overflow condition in the DHCP relay subsystem of the affected software. An attacker could exploit this vulnerability by sending a crafted DHCP Version 4 (DHCPv4) packet to an affected system. A successful exploit could allow the attacker to execute arbitrary code and gain full control of the affected system or cause the affected system to reload, resulting in a DoS condition. Cisco Bug IDs: CSCsm45390, CSCuw77959. |
| A vulnerability in the Virtual Private LAN Service (VPLS) code of Cisco IOS 15.0 through 15.4 for Cisco Catalyst 6800 Series Switches could allow an unauthenticated, adjacent attacker to cause a C6800-16P10G or C6800-16P10G-XL type line card to crash, resulting in a denial of service (DoS) condition. The vulnerability is due to a memory management issue in the affected software. An attacker could exploit this vulnerability by creating a large number of VPLS-generated MAC entries in the MAC address table of an affected device. A successful exploit could allow the attacker to cause a C6800-16P10G or C6800-16P10G-XL type line card to crash, resulting in a DoS condition. This vulnerability affects Cisco Catalyst 6800 Series Switches that are running a vulnerable release of Cisco IOS Software and have a Cisco C6800-16P10G or C6800-16P10G-XL line card in use with Supervisor Engine 6T. To be vulnerable, the device must also be configured with VPLS and the C6800-16P10G or C6800-16P10G-XL line card needs to be the core-facing MPLS interfaces. Cisco Bug IDs: CSCva61927. |
| A vulnerability in the Internet Key Exchange Version 2 (IKEv2) module of Cisco IOS 15.0 through 15.6 and Cisco IOS XE 3.5 through 16.5 could allow an unauthenticated, remote attacker to cause high CPU utilization, traceback messages, or a reload of an affected device that leads to a denial of service (DoS) condition. The vulnerability is due to how an affected device processes certain IKEv2 packets. An attacker could exploit this vulnerability by sending specific IKEv2 packets to an affected device to be processed. A successful exploit could allow the attacker to cause high CPU utilization, traceback messages, or a reload of the affected device that leads to a DoS condition. This vulnerability affects Cisco devices that have the Internet Security Association and Key Management Protocol (ISAKMP) enabled. Although only IKEv2 packets can be used to trigger this vulnerability, devices that are running Cisco IOS Software or Cisco IOS XE Software are vulnerable when ISAKMP is enabled. A device does not need to be configured with any IKEv2-specific features to be vulnerable. Many features use IKEv2, including different types of VPNs such as the following: LAN-to-LAN VPN; Remote-access VPN, excluding SSL VPN; Dynamic Multipoint VPN (DMVPN); and FlexVPN. Cisco Bug IDs: CSCvc41277. |
| A vulnerability in the implementation of the PROFINET Discovery and Configuration Protocol (PN-DCP) for Cisco IOS 12.2 through 15.6 could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerability is due to the improper parsing of ingress PN-DCP Identify Request packets destined to an affected device. An attacker could exploit this vulnerability by sending a crafted PN-DCP Identify Request packet to an affected device and then continuing to send normal PN-DCP Identify Request packets to the device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. This vulnerability affects Cisco devices that are configured to process PROFINET messages. Beginning with Cisco IOS Software Release 12.2(52)SE, PROFINET is enabled by default on all the base switch module and expansion-unit Ethernet ports. Cisco Bug IDs: CSCuz47179. |
| Multiple vulnerabilities in the implementation of the Common Industrial Protocol (CIP) feature in Cisco IOS 12.4 through 15.6 could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerabilities are due to the improper parsing of crafted CIP packets destined to an affected device. An attacker could exploit these vulnerabilities by sending crafted CIP packets to be processed by an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCvc43709. |
| Multiple vulnerabilities in the implementation of the Common Industrial Protocol (CIP) feature in Cisco IOS 12.4 through 15.6 could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerabilities are due to the improper parsing of crafted CIP packets destined to an affected device. An attacker could exploit these vulnerabilities by sending crafted CIP packets to be processed by an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCuz95334. |
| A vulnerability in the implementation of a protocol in Cisco Integrated Services Routers Generation 2 (ISR G2) Routers running Cisco IOS 15.0 through 15.6 could allow an unauthenticated, adjacent attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerability is due to a misclassification of Ethernet frames. An attacker could exploit this vulnerability by sending a crafted Ethernet frame to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCvc03809. |
| The server IKEv1 implementation in Cisco IOS 12.2 through 12.4 and 15.0 through 15.6, IOS XE through 3.18S, IOS XR 4.3.x and 5.0.x through 5.2.x, and PIX before 7.0 allows remote attackers to obtain sensitive information from device memory via a Security Association (SA) negotiation request, aka Bug IDs CSCvb29204 and CSCvb36055 or BENIGNCERTAIN. |
| In JetBrains ReSharper, Rider and dotTrace before 2025.2.5 local privilege escalation was possible via race condition |
| pnpm is a package manager. Versions 10.0.0 through 10.25 allow git-hosted dependencies to execute arbitrary code during pnpm install, circumventing the v10 security feature "Dependency lifecycle scripts execution disabled by default". While pnpm v10 blocks postinstall scripts via the onlyBuiltDependencies mechanism, git dependencies can still execute prepare, prepublish, and prepack scripts during the fetch phase, enabling remote code execution without user consent or approval. This issue is fixed in version 10.26.0. |
| pnpm is a package manager. Versions 10.26.2 and below store HTTP tarball dependencies (and git-hosted tarballs) in the lockfile without integrity hashes. This allows the remote server to serve different content on each install, even when a lockfile is committed. An attacker who publishes a package with an HTTP tarball dependency can serve different code to different users or CI/CD environments. The attack requires the victim to install a package that has an HTTP/git tarball in its dependency tree. The victim's lockfile provides no protection. This issue is fixed in version 10.26.0. |
| pnpm is a package manager. Versions 6.25.0 through 10.26.2 have a Command Injection vulnerability when using environment variable substitution in .npmrc configuration files with tokenHelper settings. An attacker who can control environment variables during pnpm operations could achieve Remote Code Execution (RCE) in build environments. This issue is fixed in version 10.27.0. |
| Pterodactyl is a free, open-source game server management panel. Versions 1.11.11 and below do not revoke active SFTP connections when a user is removed from a server instance or has their permissions changes with respect to file access over SFTP. This allows a user that was already connected to SFTP to remain connected and access files even after their permissions are revoked. A user must have been connected to SFTP at the time of their permissions being revoked in order for this vulnerability to be exploited. This issue is fixed in version 1.12.0. |
| Pterodactyl is a free, open-source game server management panel. Versions 1.11.11 and below allow TOTP to be used multiple times during its validity window. Users with 2FA enabled are prompted to enter a token during sign-in, and afterward it is not sufficiently marked as used in the system. This allows an attacker who intercepts that token to use it in addition to a known username/password during the 60-second token validity window. The attacker must have intercepted a valid 2FA token (for example, during a screen share). This issue is fixed in version 1.12.0. |
| A vulnerability has been found in UTT 进取 520W 1.7.7-180627. This issue affects the function strcpy of the file /goform/ConfigAdvideo. The manipulation of the argument timestart leads to buffer overflow. The attack is possible to be carried out remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |