Search Results (194 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-35260 4 Apple, Haxx, Netapp and 1 more 12 Macos, Curl, Clustered Data Ontap and 9 more 2024-11-21 6.5 Medium
curl can be told to parse a `.netrc` file for credentials. If that file endsin a line with 4095 consecutive non-white space letters and no newline, curlwould first read past the end of the stack-based buffer, and if the readworks, write a zero byte beyond its boundary.This will in most cases cause a segfault or similar, but circumstances might also cause different outcomes.If a malicious user can provide a custom netrc file to an application or otherwise affect its contents, this flaw could be used as denial-of-service.
CVE-2022-32221 6 Apple, Debian, Haxx and 3 more 16 Macos, Debian Linux, Curl and 13 more 2024-11-21 9.8 Critical
When doing HTTP(S) transfers, libcurl might erroneously use the read callback (`CURLOPT_READFUNCTION`) to ask for data to send, even when the `CURLOPT_POSTFIELDS` option has been set, if the same handle previously was used to issue a `PUT` request which used that callback. This flaw may surprise the application and cause it to misbehave and either send off the wrong data or use memory after free or similar in the subsequent `POST` request. The problem exists in the logic for a reused handle when it is changed from a PUT to a POST.
CVE-2022-30522 4 Apache, Fedoraproject, Netapp and 1 more 6 Http Server, Fedora, Clustered Data Ontap and 3 more 2024-11-21 7.5 High
If Apache HTTP Server 2.4.53 is configured to do transformations with mod_sed in contexts where the input to mod_sed may be very large, mod_sed may make excessively large memory allocations and trigger an abort.
CVE-2022-30115 3 Haxx, Netapp, Splunk 15 Curl, Clustered Data Ontap, H300s and 12 more 2024-11-21 4.3 Medium
Using its HSTS support, curl can be instructed to use HTTPS directly insteadof using an insecure clear-text HTTP step even when HTTP is provided in theURL. This mechanism could be bypassed if the host name in the given URL used atrailing dot while not using one when it built the HSTS cache. Or the otherway around - by having the trailing dot in the HSTS cache and *not* using thetrailing dot in the URL.
CVE-2022-2097 6 Debian, Fedoraproject, Netapp and 3 more 16 Debian Linux, Fedora, Active Iq Unified Manager and 13 more 2024-11-21 5.3 Medium
AES OCB mode for 32-bit x86 platforms using the AES-NI assembly optimised implementation will not encrypt the entirety of the data under some circumstances. This could reveal sixteen bytes of data that was preexisting in the memory that wasn't written. In the special case of "in place" encryption, sixteen bytes of the plaintext would be revealed. Since OpenSSL does not support OCB based cipher suites for TLS and DTLS, they are both unaffected. Fixed in OpenSSL 3.0.5 (Affected 3.0.0-3.0.4). Fixed in OpenSSL 1.1.1q (Affected 1.1.1-1.1.1p).
CVE-2022-29824 6 Debian, Fedoraproject, Netapp and 3 more 26 Debian Linux, Fedora, Active Iq Unified Manager and 23 more 2024-11-21 6.5 Medium
In libxml2 before 2.9.14, several buffer handling functions in buf.c (xmlBuf*) and tree.c (xmlBuffer*) don't check for integer overflows. This can result in out-of-bounds memory writes. Exploitation requires a victim to open a crafted, multi-gigabyte XML file. Other software using libxml2's buffer functions, for example libxslt through 1.1.35, is affected as well.
CVE-2022-29404 4 Apache, Fedoraproject, Netapp and 1 more 5 Http Server, Fedora, Clustered Data Ontap and 2 more 2024-11-21 7.5 High
In Apache HTTP Server 2.4.53 and earlier, a malicious request to a lua script that calls r:parsebody(0) may cause a denial of service due to no default limit on possible input size.
CVE-2022-28614 4 Apache, Fedoraproject, Netapp and 1 more 6 Http Server, Fedora, Clustered Data Ontap and 3 more 2024-11-21 5.3 Medium
The ap_rwrite() function in Apache HTTP Server 2.4.53 and earlier may read unintended memory if an attacker can cause the server to reflect very large input using ap_rwrite() or ap_rputs(), such as with mod_luas r:puts() function. Modules compiled and distributed separately from Apache HTTP Server that use the 'ap_rputs' function and may pass it a very large (INT_MAX or larger) string must be compiled against current headers to resolve the issue.
CVE-2022-27781 5 Debian, Haxx, Netapp and 2 more 17 Debian Linux, Curl, Clustered Data Ontap and 14 more 2024-11-21 7.5 High
libcurl provides the `CURLOPT_CERTINFO` option to allow applications torequest details to be returned about a server's certificate chain.Due to an erroneous function, a malicious server could make libcurl built withNSS get stuck in a never-ending busy-loop when trying to retrieve thatinformation.
CVE-2022-27780 3 Haxx, Netapp, Splunk 15 Curl, Clustered Data Ontap, H300s and 12 more 2024-11-21 7.5 High
The curl URL parser wrongly accepts percent-encoded URL separators like '/'when decoding the host name part of a URL, making it a *different* URL usingthe wrong host name when it is later retrieved.For example, a URL like `http://example.com%2F127.0.0.1/`, would be allowed bythe parser and get transposed into `http://example.com/127.0.0.1/`. This flawcan be used to circumvent filters, checks and more.
CVE-2022-27779 3 Haxx, Netapp, Splunk 15 Curl, Clustered Data Ontap, H300s and 12 more 2024-11-21 5.3 Medium
libcurl wrongly allows cookies to be set for Top Level Domains (TLDs) if thehost name is provided with a trailing dot.curl can be told to receive and send cookies. curl's "cookie engine" can bebuilt with or without [Public Suffix List](https://publicsuffix.org/)awareness. If PSL support not provided, a more rudimentary check exists to atleast prevent cookies from being set on TLDs. This check was broken if thehost name in the URL uses a trailing dot.This can allow arbitrary sites to set cookies that then would get sent to adifferent and unrelated site or domain.
CVE-2022-27778 4 Haxx, Netapp, Oracle and 1 more 19 Curl, Active Iq Unified Manager, Bh500s Firmware and 16 more 2024-11-21 8.1 High
A use of incorrectly resolved name vulnerability fixed in 7.83.1 might remove the wrong file when `--no-clobber` is used together with `--remove-on-error`.
CVE-2022-27776 7 Brocade, Debian, Fedoraproject and 4 more 19 Fabric Operating System, Debian Linux, Fedora and 16 more 2024-11-21 6.5 Medium
A insufficiently protected credentials vulnerability in fixed in curl 7.83.0 might leak authentication or cookie header data on HTTP redirects to the same host but another port number.
CVE-2022-27775 6 Brocade, Debian, Haxx and 3 more 18 Fabric Operating System, Debian Linux, Curl and 15 more 2024-11-21 7.5 High
An information disclosure vulnerability exists in curl 7.65.0 to 7.82.0 are vulnerable that by using an IPv6 address that was in the connection pool but with a different zone id it could reuse a connection instead.
CVE-2022-27774 6 Brocade, Debian, Haxx and 3 more 18 Fabric Operating System, Debian Linux, Curl and 15 more 2024-11-21 5.7 Medium
An insufficiently protected credentials vulnerability exists in curl 4.9 to and include curl 7.82.0 are affected that could allow an attacker to extract credentials when follows HTTP(S) redirects is used with authentication could leak credentials to other services that exist on different protocols or port numbers.
CVE-2022-22576 6 Brocade, Debian, Haxx and 3 more 18 Fabric Operating System, Debian Linux, Curl and 15 more 2024-11-21 8.1 High
An improper authentication vulnerability exists in curl 7.33.0 to and including 7.82.0 which might allow reuse OAUTH2-authenticated connections without properly making sure that the connection was authenticated with the same credentials as set for this transfer. This affects SASL-enabled protocols: SMPTP(S), IMAP(S), POP3(S) and LDAP(S) (openldap only).
CVE-2022-1434 2 Netapp, Openssl 43 A250, A250 Firmware, A700s and 40 more 2024-11-21 5.9 Medium
The OpenSSL 3.0 implementation of the RC4-MD5 ciphersuite incorrectly uses the AAD data as the MAC key. This makes the MAC key trivially predictable. An attacker could exploit this issue by performing a man-in-the-middle attack to modify data being sent from one endpoint to an OpenSSL 3.0 recipient such that the modified data would still pass the MAC integrity check. Note that data sent from an OpenSSL 3.0 endpoint to a non-OpenSSL 3.0 endpoint will always be rejected by the recipient and the connection will fail at that point. Many application protocols require data to be sent from the client to the server first. Therefore, in such a case, only an OpenSSL 3.0 server would be impacted when talking to a non-OpenSSL 3.0 client. If both endpoints are OpenSSL 3.0 then the attacker could modify data being sent in both directions. In this case both clients and servers could be affected, regardless of the application protocol. Note that in the absence of an attacker this bug means that an OpenSSL 3.0 endpoint communicating with a non-OpenSSL 3.0 endpoint will fail to complete the handshake when using this ciphersuite. The confidentiality of data is not impacted by this issue, i.e. an attacker cannot decrypt data that has been encrypted using this ciphersuite - they can only modify it. In order for this attack to work both endpoints must legitimately negotiate the RC4-MD5 ciphersuite. This ciphersuite is not compiled by default in OpenSSL 3.0, and is not available within the default provider or the default ciphersuite list. This ciphersuite will never be used if TLSv1.3 has been negotiated. In order for an OpenSSL 3.0 endpoint to use this ciphersuite the following must have occurred: 1) OpenSSL must have been compiled with the (non-default) compile time option enable-weak-ssl-ciphers 2) OpenSSL must have had the legacy provider explicitly loaded (either through application code or via configuration) 3) The ciphersuite must have been explicitly added to the ciphersuite list 4) The libssl security level must have been set to 0 (default is 1) 5) A version of SSL/TLS below TLSv1.3 must have been negotiated 6) Both endpoints must negotiate the RC4-MD5 ciphersuite in preference to any others that both endpoints have in common Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2).
CVE-2022-0778 8 Debian, Fedoraproject, Mariadb and 5 more 25 Debian Linux, Fedora, Mariadb and 22 more 2024-11-21 7.5 High
The BN_mod_sqrt() function, which computes a modular square root, contains a bug that can cause it to loop forever for non-prime moduli. Internally this function is used when parsing certificates that contain elliptic curve public keys in compressed form or explicit elliptic curve parameters with a base point encoded in compressed form. It is possible to trigger the infinite loop by crafting a certificate that has invalid explicit curve parameters. Since certificate parsing happens prior to verification of the certificate signature, any process that parses an externally supplied certificate may thus be subject to a denial of service attack. The infinite loop can also be reached when parsing crafted private keys as they can contain explicit elliptic curve parameters. Thus vulnerable situations include: - TLS clients consuming server certificates - TLS servers consuming client certificates - Hosting providers taking certificates or private keys from customers - Certificate authorities parsing certification requests from subscribers - Anything else which parses ASN.1 elliptic curve parameters Also any other applications that use the BN_mod_sqrt() where the attacker can control the parameter values are vulnerable to this DoS issue. In the OpenSSL 1.0.2 version the public key is not parsed during initial parsing of the certificate which makes it slightly harder to trigger the infinite loop. However any operation which requires the public key from the certificate will trigger the infinite loop. In particular the attacker can use a self-signed certificate to trigger the loop during verification of the certificate signature. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0. It was addressed in the releases of 1.1.1n and 3.0.2 on the 15th March 2022. Fixed in OpenSSL 3.0.2 (Affected 3.0.0,3.0.1). Fixed in OpenSSL 1.1.1n (Affected 1.1.1-1.1.1m). Fixed in OpenSSL 1.0.2zd (Affected 1.0.2-1.0.2zc).
CVE-2021-41617 6 Fedoraproject, Netapp, Openbsd and 3 more 15 Fedora, Active Iq Unified Manager, Aff 500f and 12 more 2024-11-21 7.0 High
sshd in OpenSSH 6.2 through 8.x before 8.8, when certain non-default configurations are used, allows privilege escalation because supplemental groups are not initialized as expected. Helper programs for AuthorizedKeysCommand and AuthorizedPrincipalsCommand may run with privileges associated with group memberships of the sshd process, if the configuration specifies running the command as a different user.
CVE-2021-3712 8 Debian, Mcafee, Netapp and 5 more 36 Debian Linux, Epolicy Orchestrator, Clustered Data Ontap and 33 more 2024-11-21 7.4 High
ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL terminated, even though this is not guaranteed for strings that have been directly constructed. Where an application requests an ASN.1 structure to be printed, and where that ASN.1 structure contains ASN1_STRINGs that have been directly constructed by the application without NUL terminating the "data" field, then a read buffer overrun can occur. The same thing can also occur during name constraints processing of certificates (for example if a certificate has been directly constructed by the application instead of loading it via the OpenSSL parsing functions, and the certificate contains non NUL terminated ASN1_STRING structures). It can also occur in the X509_get1_email(), X509_REQ_get1_email() and X509_get1_ocsp() functions. If a malicious actor can cause an application to directly construct an ASN1_STRING and then process it through one of the affected OpenSSL functions then this issue could be hit. This might result in a crash (causing a Denial of Service attack). It could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext). Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). Fixed in OpenSSL 1.0.2za (Affected 1.0.2-1.0.2y).