| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The encode_name macro in misc/mntent_r.c in the GNU C Library (aka glibc or libc6) 2.11.1 and earlier, as used by ncpmount and mount.cifs, does not properly handle newline characters in mountpoint names, which allows local users to cause a denial of service (mtab corruption), or possibly modify mount options and gain privileges, via a crafted mount request. |
| The vfprintf function in stdio-common/vfprintf.c in GNU C Library (aka glibc) 2.5, 2.12, and probably other versions does not "properly restrict the use of" the alloca function when allocating the SPECS array, which allows context-dependent attackers to bypass the FORTIFY_SOURCE format-string protection mechanism and cause a denial of service (crash) or possibly execute arbitrary code via a crafted format string using positional parameters and a large number of format specifiers, a different vulnerability than CVE-2012-3404 and CVE-2012-3405. |
| Integer signedness error in the elf_get_dynamic_info function in elf/dynamic-link.h in ld.so in the GNU C Library (aka glibc or libc6) 2.0.1 through 2.11.1, when the --verify option is used, allows user-assisted remote attackers to execute arbitrary code via a crafted ELF program with a negative value for a certain d_tag structure member in the ELF header. |
| The regcomp implementation in the GNU C Library (aka glibc or libc6) through 2.11.3, and 2.12.x through 2.12.2, allows context-dependent attackers to cause a denial of service (application crash) via a regular expression containing adjacent bounded repetitions that bypass the intended RE_DUP_MAX limitation, as demonstrated by a {10,}{10,}{10,}{10,}{10,} sequence in the proftpd.gnu.c exploit for ProFTPD, related to a "RE_DUP_MAX overflow." |
| Stack-based buffer overflow in string/strcoll_l.c in the GNU C Library (aka glibc or libc6) 2.17 and earlier allows context-dependent attackers to cause a denial of service (crash) or possibly execute arbitrary code via a long string that triggers a malloc failure and use of the alloca function. |
| The GNU C Library (aka glibc or libc6) before 2.12.2 and Embedded GLIBC (EGLIBC) allow context-dependent attackers to execute arbitrary code or cause a denial of service (memory consumption) via a long UTF8 string that is used in an fnmatch call, aka a "stack extension attack," a related issue to CVE-2010-2898, CVE-2010-1917, and CVE-2007-4782, as originally reported for use of this library by Google Chrome. |
| locale/programs/locale.c in locale in the GNU C Library (aka glibc or libc6) before 2.13 does not quote its output, which might allow local users to gain privileges via a crafted localization environment variable, in conjunction with a program that executes a script that uses the eval function. |
| ld.so in the GNU C Library (aka glibc or libc6) before 2.11.3, and 2.12.x before 2.12.2, does not properly restrict use of the LD_AUDIT environment variable to reference dynamic shared objects (DSOs) as audit objects, which allows local users to gain privileges by leveraging an unsafe DSO located in a trusted library directory, as demonstrated by libpcprofile.so. |
| nis/nss_nis/nis-pwd.c in the GNU C Library (aka glibc or libc6) 2.7 and Embedded GLIBC (EGLIBC) 2.10.2 adds information from the passwd.adjunct.byname map to entries in the passwd map, which allows remote attackers to obtain the encrypted passwords of NIS accounts by calling the getpwnam function. |
| The resolver in glibc 2.1.3 uses predictable IDs, which allows a local attacker to spoof DNS query results. |
| The Sun RPC functionality in multiple libc implementations does not provide a time-out mechanism when reading data from TCP connections, which allows remote attackers to cause a denial of service (hang). |
| The unsetenv function in glibc 2.1.1 does not properly unset an environmental variable if the variable is provided twice to a program, which could allow local users to execute arbitrary commands in setuid programs by specifying their own duplicate environmental variables such as LD_PRELOAD or LD_LIBRARY_PATH. |
| GNU glibc 2.3.4 before 2.3.4.20040619, 2.3.3 before 2.3.3.20040420, and 2.3.2 before 2.3.2-r10 does not restrict the use of LD_DEBUG for a setuid program, which allows local users to gain sensitive information, such as the list of symbols used by the program. |
| The getifaddrs function in GNU libc (glibc) 2.2.4 and earlier allows local users to cause a denial of service by sending spoofed messages as other users to the kernel netlink interface. |
| glibc2 does not properly clear the LD_DEBUG_OUTPUT and LD_DEBUG environmental variables when a program is spawned from a setuid program, which could allow local users to overwrite files via a symlink attack. |
| Buffer overflow in DNS resolver functions that perform lookup of network names and addresses, as used in BIND 4.9.8 and ported to glibc 2.2.5 and earlier, allows remote malicious DNS servers to execute arbitrary code through a subroutine used by functions such as getnetbyname and getnetbyaddr. |
| The BIND 4 and BIND 8.2.x stub resolver libraries, and other libraries such as glibc 2.2.5 and earlier, libc, and libresolv, use the maximum buffer size instead of the actual size when processing a DNS response, which causes the stub resolvers to read past the actual boundary ("read buffer overflow"), allowing remote attackers to cause a denial of service (crash). |
| Integer overflow in the xdrmem_getbytes() function, and possibly other functions, of XDR (external data representation) libraries derived from SunRPC, including libnsl, libc, glibc, and dietlibc, allows remote attackers to execute arbitrary code via certain integer values in length fields, a different vulnerability than CVE-2002-0391. |
| The glibcbug script in glibc 2.3.4 and earlier allows local users to overwrite arbitrary files via a symlink attack on temporary files, a different vulnerability than CVE-2004-0968. |
| The catchsegv script in glibc 2.3.2 and earlier allows local users to overwrite files via a symlink attack on temporary files. |