CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Fix sdma.h tx->num_descs off-by-one error
Unfortunately the commit `fd8958efe877` introduced another error
causing the `descs` array to overflow. This reults in further crashes
easily reproducible by `sendmsg` system call.
[ 1080.836473] general protection fault, probably for non-canonical address 0x400300015528b00a: 0000 [#1] PREEMPT SMP PTI
[ 1080.869326] RIP: 0010:hfi1_ipoib_build_ib_tx_headers.constprop.0+0xe1/0x2b0 [hfi1]
--
[ 1080.974535] Call Trace:
[ 1080.976990] <TASK>
[ 1081.021929] hfi1_ipoib_send_dma_common+0x7a/0x2e0 [hfi1]
[ 1081.027364] hfi1_ipoib_send_dma_list+0x62/0x270 [hfi1]
[ 1081.032633] hfi1_ipoib_send+0x112/0x300 [hfi1]
[ 1081.042001] ipoib_start_xmit+0x2a9/0x2d0 [ib_ipoib]
[ 1081.046978] dev_hard_start_xmit+0xc4/0x210
--
[ 1081.148347] __sys_sendmsg+0x59/0xa0
crash> ipoib_txreq 0xffff9cfeba229f00
struct ipoib_txreq {
txreq = {
list = {
next = 0xffff9cfeba229f00,
prev = 0xffff9cfeba229f00
},
descp = 0xffff9cfeba229f40,
coalesce_buf = 0x0,
wait = 0xffff9cfea4e69a48,
complete = 0xffffffffc0fe0760 <hfi1_ipoib_sdma_complete>,
packet_len = 0x46d,
tlen = 0x0,
num_desc = 0x0,
desc_limit = 0x6,
next_descq_idx = 0x45c,
coalesce_idx = 0x0,
flags = 0x0,
descs = {{
qw = {0x8024000120dffb00, 0x4} # SDMA_DESC0_FIRST_DESC_FLAG (bit 63)
}, {
qw = { 0x3800014231b108, 0x4}
}, {
qw = { 0x310000e4ee0fcf0, 0x8}
}, {
qw = { 0x3000012e9f8000, 0x8}
}, {
qw = { 0x59000dfb9d0000, 0x8}
}, {
qw = { 0x78000e02e40000, 0x8}
}}
},
sdma_hdr = 0x400300015528b000, <<< invalid pointer in the tx request structure
sdma_status = 0x0, SDMA_DESC0_LAST_DESC_FLAG (bit 62)
complete = 0x0,
priv = 0x0,
txq = 0xffff9cfea4e69880,
skb = 0xffff9d099809f400
}
If an SDMA send consists of exactly 6 descriptors and requires dword
padding (in the 7th descriptor), the sdma_txreq descriptor array is not
properly expanded and the packet will overflow into the container
structure. This results in a panic when the send completion runs. The
exact panic varies depending on what elements of the container structure
get corrupted. The fix is to use the correct expression in
_pad_sdma_tx_descs() to test the need to expand the descriptor array.
With this patch the crashes are no longer reproducible and the machine is
stable. |
In the Linux kernel, the following vulnerability has been resolved:
l2tp: pass correct message length to ip6_append_data
l2tp_ip6_sendmsg needs to avoid accounting for the transport header
twice when splicing more data into an already partially-occupied skbuff.
To manage this, we check whether the skbuff contains data using
skb_queue_empty when deciding how much data to append using
ip6_append_data.
However, the code which performed the calculation was incorrect:
ulen = len + skb_queue_empty(&sk->sk_write_queue) ? transhdrlen : 0;
...due to C operator precedence, this ends up setting ulen to
transhdrlen for messages with a non-zero length, which results in
corrupted packets on the wire.
Add parentheses to correct the calculation in line with the original
intent. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: do not ASSERT() if the newly created subvolume already got read
[BUG]
There is a syzbot crash, triggered by the ASSERT() during subvolume
creation:
assertion failed: !anon_dev, in fs/btrfs/disk-io.c:1319
------------[ cut here ]------------
kernel BUG at fs/btrfs/disk-io.c:1319!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
RIP: 0010:btrfs_get_root_ref.part.0+0x9aa/0xa60
<TASK>
btrfs_get_new_fs_root+0xd3/0xf0
create_subvol+0xd02/0x1650
btrfs_mksubvol+0xe95/0x12b0
__btrfs_ioctl_snap_create+0x2f9/0x4f0
btrfs_ioctl_snap_create+0x16b/0x200
btrfs_ioctl+0x35f0/0x5cf0
__x64_sys_ioctl+0x19d/0x210
do_syscall_64+0x3f/0xe0
entry_SYSCALL_64_after_hwframe+0x63/0x6b
---[ end trace 0000000000000000 ]---
[CAUSE]
During create_subvol(), after inserting root item for the newly created
subvolume, we would trigger btrfs_get_new_fs_root() to get the
btrfs_root of that subvolume.
The idea here is, we have preallocated an anonymous device number for
the subvolume, thus we can assign it to the new subvolume.
But there is really nothing preventing things like backref walk to read
the new subvolume.
If that happens before we call btrfs_get_new_fs_root(), the subvolume
would be read out, with a new anonymous device number assigned already.
In that case, we would trigger ASSERT(), as we really expect no one to
read out that subvolume (which is not yet accessible from the fs).
But things like backref walk is still possible to trigger the read on
the subvolume.
Thus our assumption on the ASSERT() is not correct in the first place.
[FIX]
Fix it by removing the ASSERT(), and just free the @anon_dev, reset it
to 0, and continue.
If the subvolume tree is read out by something else, it should have
already get a new anon_dev assigned thus we only need to free the
preallocated one. |
In the Linux kernel, the following vulnerability has been resolved:
crypto: ccp - Fix null pointer dereference in __sev_platform_shutdown_locked
The SEV platform device can be shutdown with a null psp_master,
e.g., using DEBUG_TEST_DRIVER_REMOVE. Found using KASAN:
[ 137.148210] ccp 0000:23:00.1: enabling device (0000 -> 0002)
[ 137.162647] ccp 0000:23:00.1: no command queues available
[ 137.170598] ccp 0000:23:00.1: sev enabled
[ 137.174645] ccp 0000:23:00.1: psp enabled
[ 137.178890] general protection fault, probably for non-canonical address 0xdffffc000000001e: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC KASAN NOPTI
[ 137.182693] KASAN: null-ptr-deref in range [0x00000000000000f0-0x00000000000000f7]
[ 137.182693] CPU: 93 PID: 1 Comm: swapper/0 Not tainted 6.8.0-rc1+ #311
[ 137.182693] RIP: 0010:__sev_platform_shutdown_locked+0x51/0x180
[ 137.182693] Code: 08 80 3c 08 00 0f 85 0e 01 00 00 48 8b 1d 67 b6 01 08 48 b8 00 00 00 00 00 fc ff df 48 8d bb f0 00 00 00 48 89 f9 48 c1 e9 03 <80> 3c 01 00 0f 85 fe 00 00 00 48 8b 9b f0 00 00 00 48 85 db 74 2c
[ 137.182693] RSP: 0018:ffffc900000cf9b0 EFLAGS: 00010216
[ 137.182693] RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 000000000000001e
[ 137.182693] RDX: 0000000000000000 RSI: 0000000000000008 RDI: 00000000000000f0
[ 137.182693] RBP: ffffc900000cf9c8 R08: 0000000000000000 R09: fffffbfff58f5a66
[ 137.182693] R10: ffffc900000cf9c8 R11: ffffffffac7ad32f R12: ffff8881e5052c28
[ 137.182693] R13: ffff8881e5052c28 R14: ffff8881758e43e8 R15: ffffffffac64abf8
[ 137.182693] FS: 0000000000000000(0000) GS:ffff889de7000000(0000) knlGS:0000000000000000
[ 137.182693] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 137.182693] CR2: 0000000000000000 CR3: 0000001cf7c7e000 CR4: 0000000000350ef0
[ 137.182693] Call Trace:
[ 137.182693] <TASK>
[ 137.182693] ? show_regs+0x6c/0x80
[ 137.182693] ? __die_body+0x24/0x70
[ 137.182693] ? die_addr+0x4b/0x80
[ 137.182693] ? exc_general_protection+0x126/0x230
[ 137.182693] ? asm_exc_general_protection+0x2b/0x30
[ 137.182693] ? __sev_platform_shutdown_locked+0x51/0x180
[ 137.182693] sev_firmware_shutdown.isra.0+0x1e/0x80
[ 137.182693] sev_dev_destroy+0x49/0x100
[ 137.182693] psp_dev_destroy+0x47/0xb0
[ 137.182693] sp_destroy+0xbb/0x240
[ 137.182693] sp_pci_remove+0x45/0x60
[ 137.182693] pci_device_remove+0xaa/0x1d0
[ 137.182693] device_remove+0xc7/0x170
[ 137.182693] really_probe+0x374/0xbe0
[ 137.182693] ? srso_return_thunk+0x5/0x5f
[ 137.182693] __driver_probe_device+0x199/0x460
[ 137.182693] driver_probe_device+0x4e/0xd0
[ 137.182693] __driver_attach+0x191/0x3d0
[ 137.182693] ? __pfx___driver_attach+0x10/0x10
[ 137.182693] bus_for_each_dev+0x100/0x190
[ 137.182693] ? __pfx_bus_for_each_dev+0x10/0x10
[ 137.182693] ? __kasan_check_read+0x15/0x20
[ 137.182693] ? srso_return_thunk+0x5/0x5f
[ 137.182693] ? _raw_spin_unlock+0x27/0x50
[ 137.182693] driver_attach+0x41/0x60
[ 137.182693] bus_add_driver+0x2a8/0x580
[ 137.182693] driver_register+0x141/0x480
[ 137.182693] __pci_register_driver+0x1d6/0x2a0
[ 137.182693] ? srso_return_thunk+0x5/0x5f
[ 137.182693] ? esrt_sysfs_init+0x1cd/0x5d0
[ 137.182693] ? __pfx_sp_mod_init+0x10/0x10
[ 137.182693] sp_pci_init+0x22/0x30
[ 137.182693] sp_mod_init+0x14/0x30
[ 137.182693] ? __pfx_sp_mod_init+0x10/0x10
[ 137.182693] do_one_initcall+0xd1/0x470
[ 137.182693] ? __pfx_do_one_initcall+0x10/0x10
[ 137.182693] ? parameq+0x80/0xf0
[ 137.182693] ? srso_return_thunk+0x5/0x5f
[ 137.182693] ? __kmalloc+0x3b0/0x4e0
[ 137.182693] ? kernel_init_freeable+0x92d/0x1050
[ 137.182693] ? kasan_populate_vmalloc_pte+0x171/0x190
[ 137.182693] ? srso_return_thunk+0x5/0x5f
[ 137.182693] kernel_init_freeable+0xa64/0x1050
[ 137.182693] ? __pfx_kernel_init+0x10/0x10
[ 137.182693] kernel_init+0x24/0x160
[ 137.182693] ? __switch_to_asm+0x3e/0x70
[ 137.182693] ret_from_fork+0x40/0x80
[ 137.182693] ? __pfx_kernel_init+0x1
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential bug in end_buffer_async_write
According to a syzbot report, end_buffer_async_write(), which handles the
completion of block device writes, may detect abnormal condition of the
buffer async_write flag and cause a BUG_ON failure when using nilfs2.
Nilfs2 itself does not use end_buffer_async_write(). But, the async_write
flag is now used as a marker by commit 7f42ec394156 ("nilfs2: fix issue
with race condition of competition between segments for dirty blocks") as
a means of resolving double list insertion of dirty blocks in
nilfs_lookup_dirty_data_buffers() and nilfs_lookup_node_buffers() and the
resulting crash.
This modification is safe as long as it is used for file data and b-tree
node blocks where the page caches are independent. However, it was
irrelevant and redundant to also introduce async_write for segment summary
and super root blocks that share buffers with the backing device. This
led to the possibility that the BUG_ON check in end_buffer_async_write
would fail as described above, if independent writebacks of the backing
device occurred in parallel.
The use of async_write for segment summary buffers has already been
removed in a previous change.
Fix this issue by removing the manipulation of the async_write flag for
the remaining super root block buffer. |
In the Linux kernel, the following vulnerability has been resolved:
inet: read sk->sk_family once in inet_recv_error()
inet_recv_error() is called without holding the socket lock.
IPv6 socket could mutate to IPv4 with IPV6_ADDRFORM
socket option and trigger a KCSAN warning. |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (coretemp) Fix out-of-bounds memory access
Fix a bug that pdata->cpu_map[] is set before out-of-bounds check.
The problem might be triggered on systems with more than 128 cores per
package. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: mark set as dead when unbinding anonymous set with timeout
While the rhashtable set gc runs asynchronously, a race allows it to
collect elements from anonymous sets with timeouts while it is being
released from the commit path.
Mingi Cho originally reported this issue in a different path in 6.1.x
with a pipapo set with low timeouts which is not possible upstream since
7395dfacfff6 ("netfilter: nf_tables: use timestamp to check for set
element timeout").
Fix this by setting on the dead flag for anonymous sets to skip async gc
in this case.
According to 08e4c8c5919f ("netfilter: nf_tables: mark newset as dead on
transaction abort"), Florian plans to accelerate abort path by releasing
objects via workqueue, therefore, this sets on the dead flag for abort
path too. |
In the Linux kernel, the following vulnerability has been resolved:
ip6_tunnel: fix NEXTHDR_FRAGMENT handling in ip6_tnl_parse_tlv_enc_lim()
syzbot pointed out [1] that NEXTHDR_FRAGMENT handling is broken.
Reading frag_off can only be done if we pulled enough bytes
to skb->head. Currently we might access garbage.
[1]
BUG: KMSAN: uninit-value in ip6_tnl_parse_tlv_enc_lim+0x94f/0xbb0
ip6_tnl_parse_tlv_enc_lim+0x94f/0xbb0
ipxip6_tnl_xmit net/ipv6/ip6_tunnel.c:1326 [inline]
ip6_tnl_start_xmit+0xab2/0x1a70 net/ipv6/ip6_tunnel.c:1432
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564
__dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
neigh_connected_output+0x569/0x660 net/core/neighbour.c:1592
neigh_output include/net/neighbour.h:542 [inline]
ip6_finish_output2+0x23a9/0x2b30 net/ipv6/ip6_output.c:137
ip6_finish_output+0x855/0x12b0 net/ipv6/ip6_output.c:222
NF_HOOK_COND include/linux/netfilter.h:303 [inline]
ip6_output+0x323/0x610 net/ipv6/ip6_output.c:243
dst_output include/net/dst.h:451 [inline]
ip6_local_out+0xe9/0x140 net/ipv6/output_core.c:155
ip6_send_skb net/ipv6/ip6_output.c:1952 [inline]
ip6_push_pending_frames+0x1f9/0x560 net/ipv6/ip6_output.c:1972
rawv6_push_pending_frames+0xbe8/0xdf0 net/ipv6/raw.c:582
rawv6_sendmsg+0x2b66/0x2e70 net/ipv6/raw.c:920
inet_sendmsg+0x105/0x190 net/ipv4/af_inet.c:847
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline]
__do_sys_sendmsg net/socket.c:2676 [inline]
__se_sys_sendmsg net/socket.c:2674 [inline]
__x64_sys_sendmsg+0x307/0x490 net/socket.c:2674
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was created at:
slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768
slab_alloc_node mm/slub.c:3478 [inline]
__kmem_cache_alloc_node+0x5c9/0x970 mm/slub.c:3517
__do_kmalloc_node mm/slab_common.c:1006 [inline]
__kmalloc_node_track_caller+0x118/0x3c0 mm/slab_common.c:1027
kmalloc_reserve+0x249/0x4a0 net/core/skbuff.c:582
pskb_expand_head+0x226/0x1a00 net/core/skbuff.c:2098
__pskb_pull_tail+0x13b/0x2310 net/core/skbuff.c:2655
pskb_may_pull_reason include/linux/skbuff.h:2673 [inline]
pskb_may_pull include/linux/skbuff.h:2681 [inline]
ip6_tnl_parse_tlv_enc_lim+0x901/0xbb0 net/ipv6/ip6_tunnel.c:408
ipxip6_tnl_xmit net/ipv6/ip6_tunnel.c:1326 [inline]
ip6_tnl_start_xmit+0xab2/0x1a70 net/ipv6/ip6_tunnel.c:1432
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564
__dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
neigh_connected_output+0x569/0x660 net/core/neighbour.c:1592
neigh_output include/net/neighbour.h:542 [inline]
ip6_finish_output2+0x23a9/0x2b30 net/ipv6/ip6_output.c:137
ip6_finish_output+0x855/0x12b0 net/ipv6/ip6_output.c:222
NF_HOOK_COND include/linux/netfilter.h:303 [inline]
ip6_output+0x323/0x610 net/ipv6/ip6_output.c:243
dst_output include/net/dst.h:451 [inline]
ip6_local_out+0xe9/0x140 net/ipv6/output_core.c:155
ip6_send_skb net/ipv6/ip6_output.c:1952 [inline]
ip6_push_pending_frames+0x1f9/0x560 net/ipv6/ip6_output.c:1972
rawv6_push_pending_frames+0xbe8/0xdf0 net/ipv6/raw.c:582
rawv6_sendmsg+0x2b66/0x2e70 net/ipv6/raw.c:920
inet_sendmsg+0x105/0x190 net/ipv4/af_inet.c:847
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline]
__do_sys_sendms
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix invalid reads in fence signaled events
Correctly set the length of the drm_event to the size of the structure
that's actually used.
The length of the drm_event was set to the parent structure instead of
to the drm_vmw_event_fence which is supposed to be read. drm_read
uses the length parameter to copy the event to the user space thus
resuling in oob reads. |
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: core: delete incorrect free in pinctrl_enable()
The "pctldev" struct is allocated in devm_pinctrl_register_and_init().
It's a devm_ managed pointer that is freed by devm_pinctrl_dev_release(),
so freeing it in pinctrl_enable() will lead to a double free.
The devm_pinctrl_dev_release() function frees the pindescs and destroys
the mutex as well. |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix race condition between ipv6_get_ifaddr and ipv6_del_addr
Although ipv6_get_ifaddr walks inet6_addr_lst under the RCU lock, it
still means hlist_for_each_entry_rcu can return an item that got removed
from the list. The memory itself of such item is not freed thanks to RCU
but nothing guarantees the actual content of the memory is sane.
In particular, the reference count can be zero. This can happen if
ipv6_del_addr is called in parallel. ipv6_del_addr removes the entry
from inet6_addr_lst (hlist_del_init_rcu(&ifp->addr_lst)) and drops all
references (__in6_ifa_put(ifp) + in6_ifa_put(ifp)). With bad enough
timing, this can happen:
1. In ipv6_get_ifaddr, hlist_for_each_entry_rcu returns an entry.
2. Then, the whole ipv6_del_addr is executed for the given entry. The
reference count drops to zero and kfree_rcu is scheduled.
3. ipv6_get_ifaddr continues and tries to increments the reference count
(in6_ifa_hold).
4. The rcu is unlocked and the entry is freed.
5. The freed entry is returned.
Prevent increasing of the reference count in such case. The name
in6_ifa_hold_safe is chosen to mimic the existing fib6_info_hold_safe.
[ 41.506330] refcount_t: addition on 0; use-after-free.
[ 41.506760] WARNING: CPU: 0 PID: 595 at lib/refcount.c:25 refcount_warn_saturate+0xa5/0x130
[ 41.507413] Modules linked in: veth bridge stp llc
[ 41.507821] CPU: 0 PID: 595 Comm: python3 Not tainted 6.9.0-rc2.main-00208-g49563be82afa #14
[ 41.508479] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
[ 41.509163] RIP: 0010:refcount_warn_saturate+0xa5/0x130
[ 41.509586] Code: ad ff 90 0f 0b 90 90 c3 cc cc cc cc 80 3d c0 30 ad 01 00 75 a0 c6 05 b7 30 ad 01 01 90 48 c7 c7 38 cc 7a 8c e8 cc 18 ad ff 90 <0f> 0b 90 90 c3 cc cc cc cc 80 3d 98 30 ad 01 00 0f 85 75 ff ff ff
[ 41.510956] RSP: 0018:ffffbda3c026baf0 EFLAGS: 00010282
[ 41.511368] RAX: 0000000000000000 RBX: ffff9e9c46914800 RCX: 0000000000000000
[ 41.511910] RDX: ffff9e9c7ec29c00 RSI: ffff9e9c7ec1c900 RDI: ffff9e9c7ec1c900
[ 41.512445] RBP: ffff9e9c43660c9c R08: 0000000000009ffb R09: 00000000ffffdfff
[ 41.512998] R10: 00000000ffffdfff R11: ffffffff8ca58a40 R12: ffff9e9c4339a000
[ 41.513534] R13: 0000000000000001 R14: ffff9e9c438a0000 R15: ffffbda3c026bb48
[ 41.514086] FS: 00007fbc4cda1740(0000) GS:ffff9e9c7ec00000(0000) knlGS:0000000000000000
[ 41.514726] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 41.515176] CR2: 000056233b337d88 CR3: 000000000376e006 CR4: 0000000000370ef0
[ 41.515713] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 41.516252] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 41.516799] Call Trace:
[ 41.517037] <TASK>
[ 41.517249] ? __warn+0x7b/0x120
[ 41.517535] ? refcount_warn_saturate+0xa5/0x130
[ 41.517923] ? report_bug+0x164/0x190
[ 41.518240] ? handle_bug+0x3d/0x70
[ 41.518541] ? exc_invalid_op+0x17/0x70
[ 41.520972] ? asm_exc_invalid_op+0x1a/0x20
[ 41.521325] ? refcount_warn_saturate+0xa5/0x130
[ 41.521708] ipv6_get_ifaddr+0xda/0xe0
[ 41.522035] inet6_rtm_getaddr+0x342/0x3f0
[ 41.522376] ? __pfx_inet6_rtm_getaddr+0x10/0x10
[ 41.522758] rtnetlink_rcv_msg+0x334/0x3d0
[ 41.523102] ? netlink_unicast+0x30f/0x390
[ 41.523445] ? __pfx_rtnetlink_rcv_msg+0x10/0x10
[ 41.523832] netlink_rcv_skb+0x53/0x100
[ 41.524157] netlink_unicast+0x23b/0x390
[ 41.524484] netlink_sendmsg+0x1f2/0x440
[ 41.524826] __sys_sendto+0x1d8/0x1f0
[ 41.525145] __x64_sys_sendto+0x1f/0x30
[ 41.525467] do_syscall_64+0xa5/0x1b0
[ 41.525794] entry_SYSCALL_64_after_hwframe+0x72/0x7a
[ 41.526213] RIP: 0033:0x7fbc4cfcea9a
[ 41.526528] Code: d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 41 89 ca 64 8b 04 25 18 00 00 00 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 7e c3 0f 1f 44 00 00 41 54 48 83 ec 30 44 89
[ 41.527942] RSP: 002b:00007f
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Properly link new fs rules into the tree
Previously, add_rule_fg would only add newly created rules from the
handle into the tree when they had a refcount of 1. On the other hand,
create_flow_handle tries hard to find and reference already existing
identical rules instead of creating new ones.
These two behaviors can result in a situation where create_flow_handle
1) creates a new rule and references it, then
2) in a subsequent step during the same handle creation references it
again,
resulting in a rule with a refcount of 2 that is not linked into the
tree, will have a NULL parent and root and will result in a crash when
the flow group is deleted because del_sw_hw_rule, invoked on rule
deletion, assumes node->parent is != NULL.
This happened in the wild, due to another bug related to incorrect
handling of duplicate pkt_reformat ids, which lead to the code in
create_flow_handle incorrectly referencing a just-added rule in the same
flow handle, resulting in the problem described above. Full details are
at [1].
This patch changes add_rule_fg to add new rules without parents into
the tree, properly initializing them and avoiding the crash. This makes
it more consistent with how rules are added to an FTE in
create_flow_handle. |
In the Linux kernel, the following vulnerability has been resolved:
dyndbg: fix old BUG_ON in >control parser
Fix a BUG_ON from 2009. Even if it looks "unreachable" (I didn't
really look), lets make sure by removing it, doing pr_err and return
-EINVAL instead. |
In the Linux kernel, the following vulnerability has been resolved:
pstore/zone: Add a null pointer check to the psz_kmsg_read
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btintel: Fix null ptr deref in btintel_read_version
If hci_cmd_sync_complete() is triggered and skb is NULL, then
hdev->req_skb is NULL, which will cause this issue. |
In the Linux kernel, the following vulnerability has been resolved:
block: prevent division by zero in blk_rq_stat_sum()
The expression dst->nr_samples + src->nr_samples may
have zero value on overflow. It is necessary to add
a check to avoid division by zero.
Found by Linux Verification Center (linuxtesting.org) with Svace. |
In the Linux kernel, the following vulnerability has been resolved:
fbmon: prevent division by zero in fb_videomode_from_videomode()
The expression htotal * vtotal can have a zero value on
overflow. It is necessary to prevent division by zero like in
fb_var_to_videomode().
Found by Linux Verification Center (linuxtesting.org) with Svace. |
In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: Fix uninit-value in nci_dev_up and nci_ntf_packet
syzbot reported the following uninit-value access issue [1][2]:
nci_rx_work() parses and processes received packet. When the payload
length is zero, each message type handler reads uninitialized payload
and KMSAN detects this issue. The receipt of a packet with a zero-size
payload is considered unexpected, and therefore, such packets should be
silently discarded.
This patch resolved this issue by checking payload size before calling
each message type handler codes. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: flush pending destroy work before exit_net release
Similar to 2c9f0293280e ("netfilter: nf_tables: flush pending destroy
work before netlink notifier") to address a race between exit_net and
the destroy workqueue.
The trace below shows an element to be released via destroy workqueue
while exit_net path (triggered via module removal) has already released
the set that is used in such transaction.
[ 1360.547789] BUG: KASAN: slab-use-after-free in nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables]
[ 1360.547861] Read of size 8 at addr ffff888140500cc0 by task kworker/4:1/152465
[ 1360.547870] CPU: 4 PID: 152465 Comm: kworker/4:1 Not tainted 6.8.0+ #359
[ 1360.547882] Workqueue: events nf_tables_trans_destroy_work [nf_tables]
[ 1360.547984] Call Trace:
[ 1360.547991] <TASK>
[ 1360.547998] dump_stack_lvl+0x53/0x70
[ 1360.548014] print_report+0xc4/0x610
[ 1360.548026] ? __virt_addr_valid+0xba/0x160
[ 1360.548040] ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[ 1360.548054] ? nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables]
[ 1360.548176] kasan_report+0xae/0xe0
[ 1360.548189] ? nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables]
[ 1360.548312] nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables]
[ 1360.548447] ? __pfx_nf_tables_trans_destroy_work+0x10/0x10 [nf_tables]
[ 1360.548577] ? _raw_spin_unlock_irq+0x18/0x30
[ 1360.548591] process_one_work+0x2f1/0x670
[ 1360.548610] worker_thread+0x4d3/0x760
[ 1360.548627] ? __pfx_worker_thread+0x10/0x10
[ 1360.548640] kthread+0x16b/0x1b0
[ 1360.548653] ? __pfx_kthread+0x10/0x10
[ 1360.548665] ret_from_fork+0x2f/0x50
[ 1360.548679] ? __pfx_kthread+0x10/0x10
[ 1360.548690] ret_from_fork_asm+0x1a/0x30
[ 1360.548707] </TASK>
[ 1360.548719] Allocated by task 192061:
[ 1360.548726] kasan_save_stack+0x20/0x40
[ 1360.548739] kasan_save_track+0x14/0x30
[ 1360.548750] __kasan_kmalloc+0x8f/0xa0
[ 1360.548760] __kmalloc_node+0x1f1/0x450
[ 1360.548771] nf_tables_newset+0x10c7/0x1b50 [nf_tables]
[ 1360.548883] nfnetlink_rcv_batch+0xbc4/0xdc0 [nfnetlink]
[ 1360.548909] nfnetlink_rcv+0x1a8/0x1e0 [nfnetlink]
[ 1360.548927] netlink_unicast+0x367/0x4f0
[ 1360.548935] netlink_sendmsg+0x34b/0x610
[ 1360.548944] ____sys_sendmsg+0x4d4/0x510
[ 1360.548953] ___sys_sendmsg+0xc9/0x120
[ 1360.548961] __sys_sendmsg+0xbe/0x140
[ 1360.548971] do_syscall_64+0x55/0x120
[ 1360.548982] entry_SYSCALL_64_after_hwframe+0x55/0x5d
[ 1360.548994] Freed by task 192222:
[ 1360.548999] kasan_save_stack+0x20/0x40
[ 1360.549009] kasan_save_track+0x14/0x30
[ 1360.549019] kasan_save_free_info+0x3b/0x60
[ 1360.549028] poison_slab_object+0x100/0x180
[ 1360.549036] __kasan_slab_free+0x14/0x30
[ 1360.549042] kfree+0xb6/0x260
[ 1360.549049] __nft_release_table+0x473/0x6a0 [nf_tables]
[ 1360.549131] nf_tables_exit_net+0x170/0x240 [nf_tables]
[ 1360.549221] ops_exit_list+0x50/0xa0
[ 1360.549229] free_exit_list+0x101/0x140
[ 1360.549236] unregister_pernet_operations+0x107/0x160
[ 1360.549245] unregister_pernet_subsys+0x1c/0x30
[ 1360.549254] nf_tables_module_exit+0x43/0x80 [nf_tables]
[ 1360.549345] __do_sys_delete_module+0x253/0x370
[ 1360.549352] do_syscall_64+0x55/0x120
[ 1360.549360] entry_SYSCALL_64_after_hwframe+0x55/0x5d
(gdb) list *__nft_release_table+0x473
0x1e033 is in __nft_release_table (net/netfilter/nf_tables_api.c:11354).
11349 list_for_each_entry_safe(flowtable, nf, &table->flowtables, list) {
11350 list_del(&flowtable->list);
11351 nft_use_dec(&table->use);
11352 nf_tables_flowtable_destroy(flowtable);
11353 }
11354 list_for_each_entry_safe(set, ns, &table->sets, list) {
11355 list_del(&set->list);
11356 nft_use_dec(&table->use);
11357 if (set->flags & (NFT_SET_MAP | NFT_SET_OBJECT))
11358 nft_map_deactivat
---truncated--- |