CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
iommu/amd: Fix pci device refcount leak in ppr_notifier()
As comment of pci_get_domain_bus_and_slot() says, it returns
a pci device with refcount increment, when finish using it,
the caller must decrement the reference count by calling
pci_dev_put(). So call it before returning from ppr_notifier()
to avoid refcount leak. |
In the Linux kernel, the following vulnerability has been resolved:
powerpc/rtas: avoid scheduling in rtas_os_term()
It's unsafe to use rtas_busy_delay() to handle a busy status from
the ibm,os-term RTAS function in rtas_os_term():
Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
BUG: sleeping function called from invalid context at arch/powerpc/kernel/rtas.c:618
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0
preempt_count: 2, expected: 0
CPU: 7 PID: 1 Comm: swapper/0 Tainted: G D 6.0.0-rc5-02182-gf8553a572277-dirty #9
Call Trace:
[c000000007b8f000] [c000000001337110] dump_stack_lvl+0xb4/0x110 (unreliable)
[c000000007b8f040] [c0000000002440e4] __might_resched+0x394/0x3c0
[c000000007b8f0e0] [c00000000004f680] rtas_busy_delay+0x120/0x1b0
[c000000007b8f100] [c000000000052d04] rtas_os_term+0xb8/0xf4
[c000000007b8f180] [c0000000001150fc] pseries_panic+0x50/0x68
[c000000007b8f1f0] [c000000000036354] ppc_panic_platform_handler+0x34/0x50
[c000000007b8f210] [c0000000002303c4] notifier_call_chain+0xd4/0x1c0
[c000000007b8f2b0] [c0000000002306cc] atomic_notifier_call_chain+0xac/0x1c0
[c000000007b8f2f0] [c0000000001d62b8] panic+0x228/0x4d0
[c000000007b8f390] [c0000000001e573c] do_exit+0x140c/0x1420
[c000000007b8f480] [c0000000001e586c] make_task_dead+0xdc/0x200
Use rtas_busy_delay_time() instead, which signals without side effects
whether to attempt the ibm,os-term RTAS call again. |
In the Linux kernel, the following vulnerability has been resolved:
mtd: lpddr2_nvm: Fix possible null-ptr-deref
It will cause null-ptr-deref when resource_size(add_range) invoked,
if platform_get_resource() returns NULL. |
In the Linux kernel, the following vulnerability has been resolved:
mm: /proc/pid/smaps_rollup: fix no vma's null-deref
Commit 258f669e7e88 ("mm: /proc/pid/smaps_rollup: convert to single value
seq_file") introduced a null-deref if there are no vma's in the task in
show_smaps_rollup. |
In the Linux kernel, the following vulnerability has been resolved:
media: coda: Add check for dcoda_iram_alloc
As the coda_iram_alloc may return NULL pointer,
it should be better to check the return value
in order to avoid NULL poineter dereference,
same as the others. |
In the Linux kernel, the following vulnerability has been resolved:
netdevsim: fix memory leak in nsim_drv_probe() when nsim_dev_resources_register() failed
If some items in nsim_dev_resources_register() fail, memory leak will
occur. The following is the memory leak information.
unreferenced object 0xffff888074c02600 (size 128):
comm "echo", pid 8159, jiffies 4294945184 (age 493.530s)
hex dump (first 32 bytes):
40 47 ea 89 ff ff ff ff 01 00 00 00 00 00 00 00 @G..............
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
backtrace:
[<0000000011a31c98>] kmalloc_trace+0x22/0x60
[<0000000027384c69>] devl_resource_register+0x144/0x4e0
[<00000000a16db248>] nsim_drv_probe+0x37a/0x1260
[<000000007d1f448c>] really_probe+0x20b/0xb10
[<00000000c416848a>] __driver_probe_device+0x1b3/0x4a0
[<00000000077e0351>] driver_probe_device+0x49/0x140
[<0000000054f2465a>] __device_attach_driver+0x18c/0x2a0
[<000000008538f359>] bus_for_each_drv+0x151/0x1d0
[<0000000038e09747>] __device_attach+0x1c9/0x4e0
[<00000000dd86e533>] bus_probe_device+0x1d5/0x280
[<00000000839bea35>] device_add+0xae0/0x1cb0
[<000000009c2abf46>] new_device_store+0x3b6/0x5f0
[<00000000fb823d7f>] bus_attr_store+0x72/0xa0
[<000000007acc4295>] sysfs_kf_write+0x106/0x160
[<000000005f50cb4d>] kernfs_fop_write_iter+0x3a8/0x5a0
[<0000000075eb41bf>] vfs_write+0x8f0/0xc80 |
In the Linux kernel, the following vulnerability has been resolved:
media: dvb-core: Fix double free in dvb_register_device()
In function dvb_register_device() -> dvb_register_media_device() ->
dvb_create_media_entity(), dvb->entity is allocated and initialized. If
the initialization fails, it frees the dvb->entity, and return an error
code. The caller takes the error code and handles the error by calling
dvb_media_device_free(), which unregisters the entity and frees the
field again if it is not NULL. As dvb->entity may not NULLed in
dvb_create_media_entity() when the allocation of dvbdev->pad fails, a
double free may occur. This may also cause an Use After free in
media_device_unregister_entity().
Fix this by storing NULL to dvb->entity when it is freed. |
In the Linux kernel, the following vulnerability has been resolved:
eth: alx: take rtnl_lock on resume
Zbynek reports that alx trips an rtnl assertion on resume:
RTNL: assertion failed at net/core/dev.c (2891)
RIP: 0010:netif_set_real_num_tx_queues+0x1ac/0x1c0
Call Trace:
<TASK>
__alx_open+0x230/0x570 [alx]
alx_resume+0x54/0x80 [alx]
? pci_legacy_resume+0x80/0x80
dpm_run_callback+0x4a/0x150
device_resume+0x8b/0x190
async_resume+0x19/0x30
async_run_entry_fn+0x30/0x130
process_one_work+0x1e5/0x3b0
indeed the driver does not hold rtnl_lock during its internal close
and re-open functions during suspend/resume. Note that this is not
a huge bug as the driver implements its own locking, and does not
implement changing the number of queues, but we need to silence
the splat. |
In the Linux kernel, the following vulnerability has been resolved:
binfmt_misc: fix shift-out-of-bounds in check_special_flags
UBSAN reported a shift-out-of-bounds warning:
left shift of 1 by 31 places cannot be represented in type 'int'
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x8d/0xcf lib/dump_stack.c:106
ubsan_epilogue+0xa/0x44 lib/ubsan.c:151
__ubsan_handle_shift_out_of_bounds+0x1e7/0x208 lib/ubsan.c:322
check_special_flags fs/binfmt_misc.c:241 [inline]
create_entry fs/binfmt_misc.c:456 [inline]
bm_register_write+0x9d3/0xa20 fs/binfmt_misc.c:654
vfs_write+0x11e/0x580 fs/read_write.c:582
ksys_write+0xcf/0x120 fs/read_write.c:637
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x34/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x4194e1
Since the type of Node's flags is unsigned long, we should define these
macros with same type too. |
In the Linux kernel, the following vulnerability has been resolved:
dm cache: Fix UAF in destroy()
Dm_cache also has the same UAF problem when dm_resume()
and dm_destroy() are concurrent.
Therefore, cancelling timer again in destroy(). |
In the Linux kernel, the following vulnerability has been resolved:
x86/xen: Fix memory leak in xen_smp_intr_init{_pv}()
These local variables @{resched|pmu|callfunc...}_name saves the new
string allocated by kasprintf(), and when bind_{v}ipi_to_irqhandler()
fails, it goes to the @fail tag, and calls xen_smp_intr_free{_pv}() to
free resource, however the new string is not saved, which cause a memory
leak issue. fix it. |
In the Linux kernel, the following vulnerability has been resolved:
thermal: intel_powerclamp: Use get_cpu() instead of smp_processor_id() to avoid crash
When CPU 0 is offline and intel_powerclamp is used to inject
idle, it generates kernel BUG:
BUG: using smp_processor_id() in preemptible [00000000] code: bash/15687
caller is debug_smp_processor_id+0x17/0x20
CPU: 4 PID: 15687 Comm: bash Not tainted 5.19.0-rc7+ #57
Call Trace:
<TASK>
dump_stack_lvl+0x49/0x63
dump_stack+0x10/0x16
check_preemption_disabled+0xdd/0xe0
debug_smp_processor_id+0x17/0x20
powerclamp_set_cur_state+0x7f/0xf9 [intel_powerclamp]
...
...
Here CPU 0 is the control CPU by default and changed to the current CPU,
if CPU 0 offlined. This check has to be performed under cpus_read_lock(),
hence the above warning.
Use get_cpu() instead of smp_processor_id() to avoid this BUG.
[ rjw: Subject edits ] |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix crash when I/O abort times out
While performing CPU hotplug, a crash with the following stack was seen:
Call Trace:
qla24xx_process_response_queue+0x42a/0x970 [qla2xxx]
qla2x00_start_nvme_mq+0x3a2/0x4b0 [qla2xxx]
qla_nvme_post_cmd+0x166/0x240 [qla2xxx]
nvme_fc_start_fcp_op.part.0+0x119/0x2e0 [nvme_fc]
blk_mq_dispatch_rq_list+0x17b/0x610
__blk_mq_sched_dispatch_requests+0xb0/0x140
blk_mq_sched_dispatch_requests+0x30/0x60
__blk_mq_run_hw_queue+0x35/0x90
__blk_mq_delay_run_hw_queue+0x161/0x180
blk_execute_rq+0xbe/0x160
__nvme_submit_sync_cmd+0x16f/0x220 [nvme_core]
nvmf_connect_admin_queue+0x11a/0x170 [nvme_fabrics]
nvme_fc_create_association.cold+0x50/0x3dc [nvme_fc]
nvme_fc_connect_ctrl_work+0x19/0x30 [nvme_fc]
process_one_work+0x1e8/0x3c0
On abort timeout, completion was called without checking if the I/O was
already completed.
Verify that I/O and abort request are indeed outstanding before attempting
completion. |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix use-after-free on probe deferral
The bridge counter was never reset when tearing down the DRM device so
that stale pointers to deallocated structures would be accessed on the
next tear down (e.g. after a second late bind deferral).
Given enough bridges and a few probe deferrals this could currently also
lead to data beyond the bridge array being corrupted.
Patchwork: https://patchwork.freedesktop.org/patch/502665/ |
In the Linux kernel, the following vulnerability has been resolved:
coresight: cti: Fix hang in cti_disable_hw()
cti_enable_hw() and cti_disable_hw() are called from an atomic context
so shouldn't use runtime PM because it can result in a sleep when
communicating with firmware.
Since commit 3c6656337852 ("Revert "firmware: arm_scmi: Add clock
management to the SCMI power domain""), this causes a hang on Juno when
running the Perf Coresight tests or running this command:
perf record -e cs_etm//u -- ls
This was also missed until the revert commit because pm_runtime_put()
was called with the wrong device until commit 692c9a499b28 ("coresight:
cti: Correct the parameter for pm_runtime_put")
With lock and scheduler debugging enabled the following is output:
coresight cti_sys0: cti_enable_hw -- dev:cti_sys0 parent: 20020000.cti
BUG: sleeping function called from invalid context at drivers/base/power/runtime.c:1151
in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 330, name: perf-exec
preempt_count: 2, expected: 0
RCU nest depth: 0, expected: 0
INFO: lockdep is turned off.
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffff80000822b394>] copy_process+0xa0c/0x1948
softirqs last enabled at (0): [<ffff80000822b394>] copy_process+0xa0c/0x1948
softirqs last disabled at (0): [<0000000000000000>] 0x0
CPU: 3 PID: 330 Comm: perf-exec Not tainted 6.0.0-00053-g042116d99298 #7
Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Sep 13 2022
Call trace:
dump_backtrace+0x134/0x140
show_stack+0x20/0x58
dump_stack_lvl+0x8c/0xb8
dump_stack+0x18/0x34
__might_resched+0x180/0x228
__might_sleep+0x50/0x88
__pm_runtime_resume+0xac/0xb0
cti_enable+0x44/0x120
coresight_control_assoc_ectdev+0xc0/0x150
coresight_enable_path+0xb4/0x288
etm_event_start+0x138/0x170
etm_event_add+0x48/0x70
event_sched_in.isra.122+0xb4/0x280
merge_sched_in+0x1fc/0x3d0
visit_groups_merge.constprop.137+0x16c/0x4b0
ctx_sched_in+0x114/0x1f0
perf_event_sched_in+0x60/0x90
ctx_resched+0x68/0xb0
perf_event_exec+0x138/0x508
begin_new_exec+0x52c/0xd40
load_elf_binary+0x6b8/0x17d0
bprm_execve+0x360/0x7f8
do_execveat_common.isra.47+0x218/0x238
__arm64_sys_execve+0x48/0x60
invoke_syscall+0x4c/0x110
el0_svc_common.constprop.4+0xfc/0x120
do_el0_svc+0x34/0xc0
el0_svc+0x40/0x98
el0t_64_sync_handler+0x98/0xc0
el0t_64_sync+0x170/0x174
Fix the issue by removing the runtime PM calls completely. They are not
needed here because it must have already been done when building the
path for a trace.
[ Fix build warnings ] |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Propagate error from htab_lock_bucket() to userspace
In __htab_map_lookup_and_delete_batch() if htab_lock_bucket() returns
-EBUSY, it will go to next bucket. Going to next bucket may not only
skip the elements in current bucket silently, but also incur
out-of-bound memory access or expose kernel memory to userspace if
current bucket_cnt is greater than bucket_size or zero.
Fixing it by stopping batch operation and returning -EBUSY when
htab_lock_bucket() fails, and the application can retry or skip the busy
batch as needed. |
In the Linux kernel, the following vulnerability has been resolved:
drm/mipi-dsi: Detach devices when removing the host
Whenever the MIPI-DSI host is unregistered, the code of
mipi_dsi_host_unregister() loops over every device currently found on that
bus and will unregister it.
However, it doesn't detach it from the bus first, which leads to all kind
of resource leaks if the host wants to perform some clean up whenever a
device is detached. |
In the Linux kernel, the following vulnerability has been resolved:
block, bfq: fix possible uaf for 'bfqq->bic'
Our test report a uaf for 'bfqq->bic' in 5.10:
==================================================================
BUG: KASAN: use-after-free in bfq_select_queue+0x378/0xa30
CPU: 6 PID: 2318352 Comm: fsstress Kdump: loaded Not tainted 5.10.0-60.18.0.50.h602.kasan.eulerosv2r11.x86_64 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-20220320_160524-szxrtosci10000 04/01/2014
Call Trace:
bfq_select_queue+0x378/0xa30
bfq_dispatch_request+0xe8/0x130
blk_mq_do_dispatch_sched+0x62/0xb0
__blk_mq_sched_dispatch_requests+0x215/0x2a0
blk_mq_sched_dispatch_requests+0x8f/0xd0
__blk_mq_run_hw_queue+0x98/0x180
__blk_mq_delay_run_hw_queue+0x22b/0x240
blk_mq_run_hw_queue+0xe3/0x190
blk_mq_sched_insert_requests+0x107/0x200
blk_mq_flush_plug_list+0x26e/0x3c0
blk_finish_plug+0x63/0x90
__iomap_dio_rw+0x7b5/0x910
iomap_dio_rw+0x36/0x80
ext4_dio_read_iter+0x146/0x190 [ext4]
ext4_file_read_iter+0x1e2/0x230 [ext4]
new_sync_read+0x29f/0x400
vfs_read+0x24e/0x2d0
ksys_read+0xd5/0x1b0
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x61/0xc6
Commit 3bc5e683c67d ("bfq: Split shared queues on move between cgroups")
changes that move process to a new cgroup will allocate a new bfqq to
use, however, the old bfqq and new bfqq can point to the same bic:
1) Initial state, two process with io in the same cgroup.
Process 1 Process 2
(BIC1) (BIC2)
| Λ | Λ
| | | |
V | V |
bfqq1 bfqq2
2) bfqq1 is merged to bfqq2.
Process 1 Process 2
(BIC1) (BIC2)
| |
\-------------\|
V
bfqq1 bfqq2(coop)
3) Process 1 exit, then issue new io(denoce IOA) from Process 2.
(BIC2)
| Λ
| |
V |
bfqq2(coop)
4) Before IOA is completed, move Process 2 to another cgroup and issue io.
Process 2
(BIC2)
Λ
|\--------------\
| V
bfqq2 bfqq3
Now that BIC2 points to bfqq3, while bfqq2 and bfqq3 both point to BIC2.
If all the requests are completed, and Process 2 exit, BIC2 will be
freed while there is no guarantee that bfqq2 will be freed before BIC2.
Fix the problem by clearing bfqq->bic while bfqq is detached from bic. |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Protect against send buffer overflow in NFSv3 READDIR
Since before the git era, NFSD has conserved the number of pages
held by each nfsd thread by combining the RPC receive and send
buffers into a single array of pages. This works because there are
no cases where an operation needs a large RPC Call message and a
large RPC Reply message at the same time.
Once an RPC Call has been received, svc_process() updates
svc_rqst::rq_res to describe the part of rq_pages that can be
used for constructing the Reply. This means that the send buffer
(rq_res) shrinks when the received RPC record containing the RPC
Call is large.
A client can force this shrinkage on TCP by sending a correctly-
formed RPC Call header contained in an RPC record that is
excessively large. The full maximum payload size cannot be
constructed in that case.
Thanks to Aleksi Illikainen and Kari Hulkko for uncovering this
issue. |
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: Fix return type of netcp_ndo_start_xmit()
With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed. A
proposed warning in clang aims to catch these at compile time, which
reveals:
drivers/net/ethernet/ti/netcp_core.c:1944:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict]
.ndo_start_xmit = netcp_ndo_start_xmit,
^~~~~~~~~~~~~~~~~~~~
1 error generated.
->ndo_start_xmit() in 'struct net_device_ops' expects a return type of
'netdev_tx_t', not 'int'. Adjust the return type of
netcp_ndo_start_xmit() to match the prototype's to resolve the warning
and CFI failure. |