| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix memory leak in ext4_mb_init_backend on error path.
Fix a memory leak discovered by syzbot when a file system is corrupted
with an illegally large s_log_groups_per_flex. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix data corruption by fallocate
When fallocate punches holes out of inode size, if original isize is in
the middle of last cluster, then the part from isize to the end of the
cluster will be zeroed with buffer write, at that time isize is not yet
updated to match the new size, if writeback is kicked in, it will invoke
ocfs2_writepage()->block_write_full_page() where the pages out of inode
size will be dropped. That will cause file corruption. Fix this by
zero out eof blocks when extending the inode size.
Running the following command with qemu-image 4.2.1 can get a corrupted
coverted image file easily.
qemu-img convert -p -t none -T none -f qcow2 $qcow_image \
-O qcow2 -o compat=1.1 $qcow_image.conv
The usage of fallocate in qemu is like this, it first punches holes out
of inode size, then extend the inode size.
fallocate(11, FALLOC_FL_KEEP_SIZE|FALLOC_FL_PUNCH_HOLE, 2276196352, 65536) = 0
fallocate(11, 0, 2276196352, 65536) = 0
v1: https://www.spinics.net/lists/linux-fsdevel/msg193999.html
v2: https://lore.kernel.org/linux-fsdevel/20210525093034.GB4112@quack2.suse.cz/T/ |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: abort in rename_exchange if we fail to insert the second ref
Error injection stress uncovered a problem where we'd leave a dangling
inode ref if we failed during a rename_exchange. This happens because
we insert the inode ref for one side of the rename, and then for the
other side. If this second inode ref insert fails we'll leave the first
one dangling and leave a corrupt file system behind. Fix this by
aborting if we did the insert for the first inode ref. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: mediatek: fix global-out-of-bounds issue
When eint virtual eint number is greater than gpio number,
it maybe produce 'desc[eint_n]' size globle-out-of-bounds issue. |
| In the Linux kernel, the following vulnerability has been resolved:
tun: avoid double free in tun_free_netdev
Avoid double free in tun_free_netdev() by moving the
dev->tstats and tun->security allocs to a new ndo_init routine
(tun_net_init()) that will be called by register_netdevice().
ndo_init is paired with the desctructor (tun_free_netdev()),
so if there's an error in register_netdevice() the destructor
will handle the frees.
BUG: KASAN: double-free or invalid-free in selinux_tun_dev_free_security+0x1a/0x20 security/selinux/hooks.c:5605
CPU: 0 PID: 25750 Comm: syz-executor416 Not tainted 5.16.0-rc2-syzk #1
Hardware name: Red Hat KVM, BIOS
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:106
print_address_description.constprop.9+0x28/0x160 mm/kasan/report.c:247
kasan_report_invalid_free+0x55/0x80 mm/kasan/report.c:372
____kasan_slab_free mm/kasan/common.c:346 [inline]
__kasan_slab_free+0x107/0x120 mm/kasan/common.c:374
kasan_slab_free include/linux/kasan.h:235 [inline]
slab_free_hook mm/slub.c:1723 [inline]
slab_free_freelist_hook mm/slub.c:1749 [inline]
slab_free mm/slub.c:3513 [inline]
kfree+0xac/0x2d0 mm/slub.c:4561
selinux_tun_dev_free_security+0x1a/0x20 security/selinux/hooks.c:5605
security_tun_dev_free_security+0x4f/0x90 security/security.c:2342
tun_free_netdev+0xe6/0x150 drivers/net/tun.c:2215
netdev_run_todo+0x4df/0x840 net/core/dev.c:10627
rtnl_unlock+0x13/0x20 net/core/rtnetlink.c:112
__tun_chr_ioctl+0x80c/0x2870 drivers/net/tun.c:3302
tun_chr_ioctl+0x2f/0x40 drivers/net/tun.c:3311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Clear stale IIR value on instruction access rights trap
When a trap 7 (Instruction access rights) occurs, this means the CPU
couldn't execute an instruction due to missing execute permissions on
the memory region. In this case it seems the CPU didn't even fetched
the instruction from memory and thus did not store it in the cr19 (IIR)
register before calling the trap handler. So, the trap handler will find
some random old stale value in cr19.
This patch simply overwrites the stale IIR value with a constant magic
"bad food" value (0xbaadf00d), in the hope people don't start to try to
understand the various random IIR values in trap 7 dumps. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: intel-sdw-acpi: harden detection of controller
The existing code currently sets a pointer to an ACPI handle before
checking that it's actually a SoundWire controller. This can lead to
issues where the graph walk continues and eventually fails, but the
pointer was set already.
This patch changes the logic so that the information provided to
the caller is set when a controller is found. |
| In the Linux kernel, the following vulnerability has been resolved:
isdn: cpai: check ctr->cnr to avoid array index out of bound
The cmtp_add_connection() would add a cmtp session to a controller
and run a kernel thread to process cmtp.
__module_get(THIS_MODULE);
session->task = kthread_run(cmtp_session, session, "kcmtpd_ctr_%d",
session->num);
During this process, the kernel thread would call detach_capi_ctr()
to detach a register controller. if the controller
was not attached yet, detach_capi_ctr() would
trigger an array-index-out-bounds bug.
[ 46.866069][ T6479] UBSAN: array-index-out-of-bounds in
drivers/isdn/capi/kcapi.c:483:21
[ 46.867196][ T6479] index -1 is out of range for type 'capi_ctr *[32]'
[ 46.867982][ T6479] CPU: 1 PID: 6479 Comm: kcmtpd_ctr_0 Not tainted
5.15.0-rc2+ #8
[ 46.869002][ T6479] Hardware name: QEMU Standard PC (i440FX + PIIX,
1996), BIOS 1.14.0-2 04/01/2014
[ 46.870107][ T6479] Call Trace:
[ 46.870473][ T6479] dump_stack_lvl+0x57/0x7d
[ 46.870974][ T6479] ubsan_epilogue+0x5/0x40
[ 46.871458][ T6479] __ubsan_handle_out_of_bounds.cold+0x43/0x48
[ 46.872135][ T6479] detach_capi_ctr+0x64/0xc0
[ 46.872639][ T6479] cmtp_session+0x5c8/0x5d0
[ 46.873131][ T6479] ? __init_waitqueue_head+0x60/0x60
[ 46.873712][ T6479] ? cmtp_add_msgpart+0x120/0x120
[ 46.874256][ T6479] kthread+0x147/0x170
[ 46.874709][ T6479] ? set_kthread_struct+0x40/0x40
[ 46.875248][ T6479] ret_from_fork+0x1f/0x30
[ 46.875773][ T6479] |
| A local privilege escalation vulnerability due to insufficient authorization in the SonicWall SMA1000 appliance management console (AMC). |
| A flaw in the binding process of Govee’s cloud platform and devices allows a remote attacker to bind an existing, online Govee device to the attacker’s account, resulting in full control of the device and removal of the device from its legitimate owner’s account.
The server‑side API allows device association using a set of identifiers: "device", "sku", "type", and a client‑computed "value", that are not cryptographically bound to a secret originating from the device itself.
The vulnerability has been verified for the Govee H6056 - lamp device in firmware version 1.08.13, but may affect also other Govee cloud‑connected devices. The vendor is not able to provide a list of affected products, but rolls out a firmware and server-side fixes. Devices that reached end‑of‑life for security support need replacement with newer models supporting updates. |
| A vulnerability has been identified in keylime where an attacker can exploit this flaw by registering a new agent using a different Trusted Platform Module (TPM) device but claiming an existing agent's unique identifier (UUID). This action overwrites the legitimate agent's identity, enabling the attacker to impersonate the compromised agent and potentially bypass security controls. |
| A flaw was found in WebKitGTK. Processing malicious web content can cause an unexpected process crash due to improper memory handling. |
| A flaw was found in WebKitGTK. This vulnerability allows remote, user-assisted information disclosure that can reveal any file the user is permitted to read via abusing the file drag-and-drop mechanism where WebKitGTK does not verify that drag operations originate from outside the browser. |
| A flaw was found in WebKitGTK and WPE WebKit. This vulnerability allows an out-of-bounds read and integer underflow, leading to a UIProcess crash (DoS) via a crafted payload to the GLib remote inspector server. |
| Insufficient permission validation in Checkmk versions prior to 2.4.0p17 and 2.3.0p42 allow low-privileged users to view agent information via the REST API, which could lead to information disclosure. |
| The Demo Importer Plus plugin for WordPress is vulnerable to unauthorized modification of data, loss of data, and privilege escalation due to a missing capability check on the Ajax::handle_request() function in all versions up to, and including, 2.0.8. This makes it possible for authenticated attackers, with Subscriber-level access and above, to trigger a full site reset, dropping all database tables except users/usermeta and re-running wp_install(), which also assigns the Administrator role to the attacking subscriber account. |
| The OpenID Connect Generic Client plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'openid_connect_generic_auth_url' shortcode in all versions up to, and including, 3.10.0 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Photo Gallery, Sliders, Proofing and Themes – NextGEN Gallery plugin for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 3.59.12 via the 'template' shortcode parameter. This is due to insufficient path validation that allows absolute paths to be provided. This makes it possible for authenticated attackers, with Contributor-level access and above, to include and execute arbitrary PHP files on the server, bypassing web server restrictions like .htaccess. Successful exploitation could lead to information disclosure, code execution in the WordPress context, and potential remote code execution if combined with arbitrary file upload capabilities. |
| In limited scenarios, sensitive data might be written to the log file if an admin uses Microsoft Teams Admin Center (TAC) to make device configuration changes. The affected log file is visible only to users with admin credentials. This is limited to Microsoft TAC and does not affect configuration changes made using the provisioning server or the device WebUI. |
| Insecure defaults in the Server Agent component of Fortra's Core Privileged Access Manager (BoKS) can result in the selection of weak password hash algorithms. This issue affects BoKS Server Agent 9.0 instances that support yescrypt and are running in a BoKS 8.1 domain. |