| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| JUNG Smart Panel KNX firmware version L1.12.22 and prior contain an unauthenticated path traversal vulnerability in the embedded web interface. The application fails to properly validate file path input, allowing remote, unauthenticated attackers to access arbitrary files on the underlying filesystem within the context of the web server. This may result in disclosure of system configuration files and other sensitive information. |
| DoraCMS version 3.1 and prior contains a server-side request forgery (SSRF) vulnerability in its UEditor remote image fetch functionality. The application accepts user-supplied URLs and performs server-side HTTP or HTTPS requests without sufficient validation or destination restrictions. The implementation does not enforce allowlists, block internal or private IP address ranges, or apply request timeouts or response size limits. An attacker can abuse this behavior to induce the server to issue outbound requests to arbitrary hosts, including internal network resources, potentially enabling internal network scanning and denial of service through resource exhaustion. |
| Tenda G300-F router firmware version 16.01.14.2 and prior contain an OS command injection vulnerability in the WAN diagnostic functionality (formSetWanDiag). The implementation constructs a shell command that invokes curl and incorporates attacker-controlled input into the command line without adequate neutralization. As a result, a remote attacker with access to the affected management interface can inject additional shell syntax and execute arbitrary commands on the device with the privileges of the management process. |
| This has been moved to the REJECTED state because the information source is under review. If circumstances change, it is possible that this will be moved to the PUBLISHED state at a later date. |
| cryptography is a package designed to expose cryptographic primitives and recipes to Python developers. Prior to 46.0.5, the public_key_from_numbers (or EllipticCurvePublicNumbers.public_key()), EllipticCurvePublicNumbers.public_key(), load_der_public_key() and load_pem_public_key() functions do not verify that the point belongs to the expected prime-order subgroup of the curve. This missing validation allows an attacker to provide a public key point P from a small-order subgroup. This can lead to security issues in various situations, such as the most commonly used signature verification (ECDSA) and shared key negotiation (ECDH). When the victim computes the shared secret as S = [victim_private_key]P via ECDH, this leaks information about victim_private_key mod (small_subgroup_order). For curves with cofactor > 1, this reveals the least significant bits of the private key. When these weak public keys are used in ECDSA , it's easy to forge signatures on the small subgroup. Only SECT curves are impacted by this. This vulnerability is fixed in 46.0.5. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: unmap and remove csa_va properly
Root PD BO should be reserved before unmap and remove
a bo_va from VM otherwise lockdep will complain.
v2: check fpriv->csa_va is not NULL instead of amdgpu_mcbp (christian)
[14616.936827] WARNING: CPU: 6 PID: 1711 at drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c:1762 amdgpu_vm_bo_del+0x399/0x3f0 [amdgpu]
[14616.937096] Call Trace:
[14616.937097] <TASK>
[14616.937102] amdgpu_driver_postclose_kms+0x249/0x2f0 [amdgpu]
[14616.937187] drm_file_free+0x1d6/0x300 [drm]
[14616.937207] drm_close_helper.isra.0+0x62/0x70 [drm]
[14616.937220] drm_release+0x5e/0x100 [drm]
[14616.937234] __fput+0x9f/0x280
[14616.937239] ____fput+0xe/0x20
[14616.937241] task_work_run+0x61/0x90
[14616.937246] exit_to_user_mode_prepare+0x215/0x220
[14616.937251] syscall_exit_to_user_mode+0x2a/0x60
[14616.937254] do_syscall_64+0x48/0x90
[14616.937257] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix sdma v4 sw fini error
Fix sdma v4 sw fini error for sdma 4.2.2 to
solve the following general protection fault
[ +0.108196] general protection fault, probably for non-canonical
address 0xd5e5a4ae79d24a32: 0000 [#1] PREEMPT SMP PTI
[ +0.000018] RIP: 0010:free_fw_priv+0xd/0x70
[ +0.000022] Call Trace:
[ +0.000012] <TASK>
[ +0.000011] release_firmware+0x55/0x80
[ +0.000021] amdgpu_ucode_release+0x11/0x20 [amdgpu]
[ +0.000415] amdgpu_sdma_destroy_inst_ctx+0x4f/0x90 [amdgpu]
[ +0.000360] sdma_v4_0_sw_fini+0xce/0x110 [amdgpu] |
| In the Linux kernel, the following vulnerability has been resolved:
net: usbnet: Fix WARNING in usbnet_start_xmit/usb_submit_urb
The syzbot fuzzer identified a problem in the usbnet driver:
usb 1-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 0 PID: 754 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
Modules linked in:
CPU: 0 PID: 754 Comm: kworker/0:2 Not tainted 6.4.0-rc7-syzkaller-00014-g692b7dc87ca6 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023
Workqueue: mld mld_ifc_work
RIP: 0010:usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
Code: 7c 24 18 e8 2c b4 5b fb 48 8b 7c 24 18 e8 42 07 f0 fe 41 89 d8 44 89 e1 4c 89 ea 48 89 c6 48 c7 c7 a0 c9 fc 8a e8 5a 6f 23 fb <0f> 0b e9 58 f8 ff ff e8 fe b3 5b fb 48 81 c5 c0 05 00 00 e9 84 f7
RSP: 0018:ffffc9000463f568 EFLAGS: 00010086
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: ffff88801eb28000 RSI: ffffffff814c03b7 RDI: 0000000000000001
RBP: ffff8881443b7190 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000003
R13: ffff88802a77cb18 R14: 0000000000000003 R15: ffff888018262500
FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000556a99c15a18 CR3: 0000000028c71000 CR4: 0000000000350ef0
Call Trace:
<TASK>
usbnet_start_xmit+0xfe5/0x2190 drivers/net/usb/usbnet.c:1453
__netdev_start_xmit include/linux/netdevice.h:4918 [inline]
netdev_start_xmit include/linux/netdevice.h:4932 [inline]
xmit_one net/core/dev.c:3578 [inline]
dev_hard_start_xmit+0x187/0x700 net/core/dev.c:3594
...
This bug is caused by the fact that usbnet trusts the bulk endpoint
addresses its probe routine receives in the driver_info structure, and
it does not check to see that these endpoints actually exist and have
the expected type and directions.
The fix is simply to add such a check. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: Rework long task execution when adding/deleting entries
When adding/deleting large number of elements in one step in ipset, it can
take a reasonable amount of time and can result in soft lockup errors. The
patch 5f7b51bf09ba ("netfilter: ipset: Limit the maximal range of
consecutive elements to add/delete") tried to fix it by limiting the max
elements to process at all. However it was not enough, it is still possible
that we get hung tasks. Lowering the limit is not reasonable, so the
approach in this patch is as follows: rely on the method used at resizing
sets and save the state when we reach a smaller internal batch limit,
unlock/lock and proceed from the saved state. Thus we can avoid long
continuous tasks and at the same time removed the limit to add/delete large
number of elements in one step.
The nfnl mutex is held during the whole operation which prevents one to
issue other ipset commands in parallel. |
| Improper export of Android application components in Bluetooth prior to SMR Jun-2025 Release 1 allows local attackers to make devices discoverable. |
| Out-of-bound read in libsecimaging.camera.samsung.so prior to SMR Feb-2025 Release 1 allows local attackers to read out-of-bounds memory. |
| Out-of-bounds write in libsecimaging.camera.samsung.so prior to SMR Jun-2025 Release 1 allows local attackers to write out-of-bounds memory. |
| Improper logging in fingerprint trustlet prior to SMR May-2025 Release 1 allows local privileged attackers to get a hmac_key. |
| LangChain is a framework for building agents and LLM-powered applications. Prior to 1.2.11, the ChatOpenAI.get_num_tokens_from_messages() method fetches arbitrary image_url values without validation when computing token counts for vision-enabled models. This allows attackers to trigger Server-Side Request Forgery (SSRF) attacks by providing malicious image URLs in user input. This vulnerability is fixed in 1.2.11. |
| AutoGPT is a platform that allows users to create, deploy, and manage continuous artificial intelligence agents that automate complex workflows. The autogpt before 0.6.32 is vulnerable to Regular Expression Denial of Service due to the use of regex at Code Extraction Block. The two Regex are used containing the corresponding dangerous patterns \s+[\s\S]*? and \s+(.*?). They share a common characteristic — the combination of two adjacent quantifiers that can match the same space character (\s). As a result, an attacker can supply a long sequence of space characters to trigger excessive regex backtracking, potentially leading to a Denial of Service (DoS). This vulnerability is fixed in 0.6.32. |
| Out-of-bounds read in fingerprint trustlet prior to SMR May-2025 Release 1 allows local privileged attackers to read out-of-bounds memory. |
| Improper access control in fingerprint trustlet prior to SMR May-2025 Release 1 allows local privileged attackers to get a auth_token. |
| Improper privilege management in ThemeManager prior to SMR Jun-2025 Release 1 allows local privileged attackers to reuse trial items. |
| Improper access control in AudioService prior to SMR Jun-2025 Release 1 allows local attackers to access sensitive information. |
| WeKan versions prior to 8.19 contain an LDAP filter injection vulnerability in LDAP authentication. User-supplied username input is incorporated into LDAP search filters and DN-related values without adequate escaping, allowing an attacker to manipulate LDAP queries during authentication. |