Filtered by vendor Nodejs
Subscriptions
Total
190 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2017-1000381 | 4 C-ares, C-ares Project, Nodejs and 1 more | 4 C-ares, C-ares, Node.js and 1 more | 2025-04-20 | 7.5 High |
The c-ares function `ares_parse_naptr_reply()`, which is used for parsing NAPTR responses, could be triggered to read memory outside of the given input buffer if the passed in DNS response packet was crafted in a particular way. | ||||
CVE-2017-15896 | 1 Nodejs | 1 Node.js | 2025-04-20 | 9.1 Critical |
Node.js was affected by OpenSSL vulnerability CVE-2017-3737 in regards to the use of SSL_read() due to TLS handshake failure. The result was that an active network attacker could send application data to Node.js using the TLS or HTTP2 modules in a way that bypassed TLS authentication and encryption. | ||||
CVE-2016-9841 | 9 Apple, Canonical, Debian and 6 more | 42 Iphone Os, Mac Os X, Tvos and 39 more | 2025-04-20 | 9.8 Critical |
inffast.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact by leveraging improper pointer arithmetic. | ||||
CVE-2016-7055 | 3 Nodejs, Openssl, Redhat | 3 Node.js, Openssl, Jboss Core Services | 2025-04-20 | 5.9 Medium |
There is a carry propagating bug in the Broadwell-specific Montgomery multiplication procedure in OpenSSL 1.0.2 and 1.1.0 before 1.1.0c that handles input lengths divisible by, but longer than 256 bits. Analysis suggests that attacks against RSA, DSA and DH private keys are impossible. This is because the subroutine in question is not used in operations with the private key itself and an input of the attacker's direct choice. Otherwise the bug can manifest itself as transient authentication and key negotiation failures or reproducible erroneous outcome of public-key operations with specially crafted input. Among EC algorithms only Brainpool P-512 curves are affected and one presumably can attack ECDH key negotiation. Impact was not analyzed in detail, because pre-requisites for attack are considered unlikely. Namely multiple clients have to choose the curve in question and the server has to share the private key among them, neither of which is default behaviour. Even then only clients that chose the curve will be affected. | ||||
CVE-2017-3738 | 4 Debian, Nodejs, Openssl and 1 more | 5 Debian Linux, Node.js, Openssl and 2 more | 2025-04-20 | 5.9 Medium |
There is an overflow bug in the AVX2 Montgomery multiplication procedure used in exponentiation with 1024-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH1024 are considered just feasible, because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH1024 private key among multiple clients, which is no longer an option since CVE-2016-0701. This only affects processors that support the AVX2 but not ADX extensions like Intel Haswell (4th generation). Note: The impact from this issue is similar to CVE-2017-3736, CVE-2017-3732 and CVE-2015-3193. OpenSSL version 1.0.2-1.0.2m and 1.1.0-1.1.0g are affected. Fixed in OpenSSL 1.0.2n. Due to the low severity of this issue we are not issuing a new release of OpenSSL 1.1.0 at this time. The fix will be included in OpenSSL 1.1.0h when it becomes available. The fix is also available in commit e502cc86d in the OpenSSL git repository. | ||||
CVE-2017-3732 | 3 Nodejs, Openssl, Redhat | 5 Node.js, Openssl, Jboss Core Services and 2 more | 2025-04-20 | 5.9 Medium |
There is a carry propagating bug in the x86_64 Montgomery squaring procedure in OpenSSL 1.0.2 before 1.0.2k and 1.1.0 before 1.1.0d. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. For example this can occur by default in OpenSSL DHE based SSL/TLS ciphersuites. Note: This issue is very similar to CVE-2015-3193 but must be treated as a separate problem. | ||||
CVE-2017-15897 | 1 Nodejs | 1 Node.js | 2025-04-20 | 3.1 Low |
Node.js had a bug in versions 8.X and 9.X which caused buffers to not be initialized when the encoding for the fill value did not match the encoding specified. For example, 'Buffer.alloc(0x100, "This is not correctly encoded", "hex");' The buffer implementation was updated such that the buffer will be initialized to all zeros in these cases. | ||||
CVE-2013-6668 | 4 Debian, Google, Nodejs and 1 more | 7 Debian Linux, Chrome, V8 and 4 more | 2025-04-12 | N/A |
Multiple unspecified vulnerabilities in Google V8 before 3.24.35.10, as used in Google Chrome before 33.0.1750.146, allow attackers to cause a denial of service or possibly have other impact via unknown vectors. | ||||
CVE-2014-0224 | 9 Fedoraproject, Filezilla-project, Mariadb and 6 more | 23 Fedora, Filezilla Server, Mariadb and 20 more | 2025-04-12 | 7.4 High |
OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability. | ||||
CVE-2016-7052 | 3 Nodejs, Novell, Openssl | 3 Node.js, Suse Linux Enterprise Module For Web Scripting, Openssl | 2025-04-12 | 7.5 High |
crypto/x509/x509_vfy.c in OpenSSL 1.0.2i allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) by triggering a CRL operation. | ||||
CVE-2016-5172 | 4 Debian, Google, Nodejs and 1 more | 4 Debian Linux, Chrome, Node.js and 1 more | 2025-04-12 | 6.5 Medium |
The parser in Google V8, as used in Google Chrome before 53.0.2785.113, mishandles scopes, which allows remote attackers to obtain sensitive information from arbitrary memory locations via crafted JavaScript code. | ||||
CVE-2016-5180 | 6 C-ares, C-ares Project, Canonical and 3 more | 6 C-ares, C-ares, Ubuntu Linux and 3 more | 2025-04-12 | 9.8 Critical |
Heap-based buffer overflow in the ares_create_query function in c-ares 1.x before 1.12.0 allows remote attackers to cause a denial of service (out-of-bounds write) or possibly execute arbitrary code via a hostname with an escaped trailing dot. | ||||
CVE-2016-3956 | 3 Ibm, Nodejs, Npmjs | 3 Sdk, Node.js, Npm | 2025-04-12 | 7.5 High |
The CLI in npm before 2.15.1 and 3.x before 3.8.3, as used in Node.js 0.10 before 0.10.44, 0.12 before 0.12.13, 4 before 4.4.2, and 5 before 5.10.0, includes bearer tokens with arbitrary requests, which allows remote HTTP servers to obtain sensitive information by reading Authorization headers. | ||||
CVE-2016-5325 | 3 Nodejs, Redhat, Suse | 4 Node.js, Openshift, Rhel Software Collections and 1 more | 2025-04-12 | N/A |
CRLF injection vulnerability in the ServerResponse#writeHead function in Node.js 0.10.x before 0.10.47, 0.12.x before 0.12.16, 4.x before 4.6.0, and 6.x before 6.7.0 allows remote attackers to inject arbitrary HTTP headers and conduct HTTP response splitting attacks via the reason argument. | ||||
CVE-2014-5256 | 2 Nodejs, Redhat | 2 Nodejs, Rhel Software Collections | 2025-04-12 | N/A |
Node.js 0.8 before 0.8.28 and 0.10 before 0.10.30 does not consider the possibility of recursive processing that triggers V8 garbage collection in conjunction with a V8 interrupt, which allows remote attackers to cause a denial of service (memory corruption and application crash) via deep JSON objects whose parsing lets this interrupt mask an overflow of the program stack. | ||||
CVE-2016-2086 | 2 Fedoraproject, Nodejs | 2 Fedora, Node.js | 2025-04-12 | N/A |
Node.js 0.10.x before 0.10.42, 0.12.x before 0.12.10, 4.x before 4.3.0, and 5.x before 5.6.0 allow remote attackers to conduct HTTP request smuggling attacks via a crafted Content-Length HTTP header. | ||||
CVE-2016-2216 | 2 Fedoraproject, Nodejs | 2 Fedora, Node.js | 2025-04-12 | N/A |
The HTTP header parsing code in Node.js 0.10.x before 0.10.42, 0.11.6 through 0.11.16, 0.12.x before 0.12.10, 4.x before 4.3.0, and 5.x before 5.6.0 allows remote attackers to bypass an HTTP response-splitting protection mechanism via UTF-8 encoded Unicode characters in the HTTP header, as demonstrated by %c4%8d%c4%8a. | ||||
CVE-2016-6306 | 7 Canonical, Debian, Hp and 4 more | 11 Ubuntu Linux, Debian Linux, Icewall Federation Agent and 8 more | 2025-04-12 | 5.9 Medium |
The certificate parser in OpenSSL before 1.0.1u and 1.0.2 before 1.0.2i might allow remote attackers to cause a denial of service (out-of-bounds read) via crafted certificate operations, related to s3_clnt.c and s3_srvr.c. | ||||
CVE-2015-3194 | 5 Canonical, Debian, Nodejs and 2 more | 6 Ubuntu Linux, Debian Linux, Node.js and 3 more | 2025-04-12 | 7.5 High |
crypto/rsa/rsa_ameth.c in OpenSSL 1.0.1 before 1.0.1q and 1.0.2 before 1.0.2e allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via an RSA PSS ASN.1 signature that lacks a mask generation function parameter. | ||||
CVE-2016-6304 | 4 Nodejs, Novell, Openssl and 1 more | 11 Node.js, Suse Linux Enterprise Module For Web Scripting, Openssl and 8 more | 2025-04-12 | 7.5 High |
Multiple memory leaks in t1_lib.c in OpenSSL before 1.0.1u, 1.0.2 before 1.0.2i, and 1.1.0 before 1.1.0a allow remote attackers to cause a denial of service (memory consumption) via large OCSP Status Request extensions. |