| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Out-of-bounds write in handling opcode in fingerprint trustlet prior to SMR Nov-2025 Release 1 allows local privileged attackers to write out-of-bounds memory. |
| InDesign Desktop versions 20.5, 19.5.5 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| InDesign Desktop versions 20.5, 19.5.5 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| InCopy versions 20.5, 19.5.5 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Photoshop Desktop versions 26.8.1 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Illustrator on iPad versions 3.0.9 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Illustrator on iPad versions 3.0.9 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Illustrator on iPad versions 3.0.9 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| In the Linux kernel, the following vulnerability has been resolved:
iomap: iomap: fix memory corruption when recording errors during writeback
Every now and then I see this crash on arm64:
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000f8
Buffer I/O error on dev dm-0, logical block 8733687, async page read
Mem abort info:
ESR = 0x0000000096000006
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
user pgtable: 64k pages, 42-bit VAs, pgdp=0000000139750000
[00000000000000f8] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000, pmd=0000000000000000
Internal error: Oops: 96000006 [#1] PREEMPT SMP
Buffer I/O error on dev dm-0, logical block 8733688, async page read
Dumping ftrace buffer:
Buffer I/O error on dev dm-0, logical block 8733689, async page read
(ftrace buffer empty)
XFS (dm-0): log I/O error -5
Modules linked in: dm_thin_pool dm_persistent_data
XFS (dm-0): Metadata I/O Error (0x1) detected at xfs_trans_read_buf_map+0x1ec/0x590 [xfs] (fs/xfs/xfs_trans_buf.c:296).
dm_bio_prison
XFS (dm-0): Please unmount the filesystem and rectify the problem(s)
XFS (dm-0): xfs_imap_lookup: xfs_ialloc_read_agi() returned error -5, agno 0
dm_bufio dm_log_writes xfs nft_chain_nat xt_REDIRECT nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip6t_REJECT
potentially unexpected fatal signal 6.
nf_reject_ipv6
potentially unexpected fatal signal 6.
ipt_REJECT nf_reject_ipv4
CPU: 1 PID: 122166 Comm: fsstress Tainted: G W 6.0.0-rc5-djwa #rc5 3004c9f1de887ebae86015f2677638ce51ee7
rpcsec_gss_krb5 auth_rpcgss xt_tcpudp ip_set_hash_ip ip_set_hash_net xt_set nft_compat ip_set_hash_mac ip_set nf_tables
Hardware name: QEMU KVM Virtual Machine, BIOS 1.5.1 06/16/2021
pstate: 60001000 (nZCv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--)
ip_tables
pc : 000003fd6d7df200
x_tables
lr : 000003fd6d7df1ec
overlay nfsv4
CPU: 0 PID: 54031 Comm: u4:3 Tainted: G W 6.0.0-rc5-djwa #rc5 3004c9f1de887ebae86015f2677638ce51ee7405
Hardware name: QEMU KVM Virtual Machine, BIOS 1.5.1 06/16/2021
Workqueue: writeback wb_workfn
sp : 000003ffd9522fd0
(flush-253:0)
pstate: 60401005 (nZCv daif +PAN -UAO -TCO -DIT +SSBS BTYPE=--)
pc : errseq_set+0x1c/0x100
x29: 000003ffd9522fd0 x28: 0000000000000023 x27: 000002acefeb6780
x26: 0000000000000005 x25: 0000000000000001 x24: 0000000000000000
x23: 00000000ffffffff x22: 0000000000000005
lr : __filemap_set_wb_err+0x24/0xe0
x21: 0000000000000006
sp : fffffe000f80f760
x29: fffffe000f80f760 x28: 0000000000000003 x27: fffffe000f80f9f8
x26: 0000000002523000 x25: 00000000fffffffb x24: fffffe000f80f868
x23: fffffe000f80fbb0 x22: fffffc0180c26a78 x21: 0000000002530000
x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000001 x13: 0000000000470af3 x12: fffffc0058f70000
x11: 0000000000000040 x10: 0000000000001b20 x9 : fffffe000836b288
x8 : fffffc00eb9fd480 x7 : 0000000000f83659 x6 : 0000000000000000
x5 : 0000000000000869 x4 : 0000000000000005 x3 : 00000000000000f8
x20: 000003fd6d740020 x19: 000000000001dd36 x18: 0000000000000001
x17: 000003fd6d78704c x16: 0000000000000001 x15: 000002acfac87668
x2 : 0000000000000ffa x1 : 00000000fffffffb x0 : 00000000000000f8
Call trace:
errseq_set+0x1c/0x100
__filemap_set_wb_err+0x24/0xe0
iomap_do_writepage+0x5e4/0xd5c
write_cache_pages+0x208/0x674
iomap_writepages+0x34/0x60
xfs_vm_writepages+0x8c/0xcc [xfs 7a861f39c43631f15d3a5884246ba5035d4ca78b]
x14: 0000000000000000 x13: 2064656e72757465 x12: 0000000000002180
x11: 000003fd6d8a82d0 x10: 0000000000000000 x9 : 000003fd6d8ae288
x8 : 0000000000000083 x7 : 00000000ffffffff x6 : 00000000ffffffee
x5 : 00000000fbad2887 x4 : 000003fd6d9abb58 x3 : 000003fd6d740020
x2 : 0000000000000006 x1 : 000000000001dd36 x0 : 0000000000000000
CPU:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Protect against send buffer overflow in NFSv2 READ
Since before the git era, NFSD has conserved the number of pages
held by each nfsd thread by combining the RPC receive and send
buffers into a single array of pages. This works because there are
no cases where an operation needs a large RPC Call message and a
large RPC Reply at the same time.
Once an RPC Call has been received, svc_process() updates
svc_rqst::rq_res to describe the part of rq_pages that can be
used for constructing the Reply. This means that the send buffer
(rq_res) shrinks when the received RPC record containing the RPC
Call is large.
A client can force this shrinkage on TCP by sending a correctly-
formed RPC Call header contained in an RPC record that is
excessively large. The full maximum payload size cannot be
constructed in that case. |
| Memory safety bugs present in Firefox 145 and Thunderbird 145. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 146 and Thunderbird < 146. |
| Memory safety bugs present in Firefox ESR 140.5, Thunderbird ESR 140.5, Firefox 145 and Thunderbird 145. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 146, Firefox ESR < 140.6, Thunderbird < 146, and Thunderbird < 140.6. |
| musl libc 0.9.13 through 1.2.5 before 1.2.6 has an out-of-bounds write vulnerability when an attacker can trigger iconv conversion of untrusted EUC-KR text to UTF-8. |
| A segment fault (SEGV) flaw was found in libtiff that could be triggered by passing a crafted tiff file to the TIFFReadRGBATileExt() API. This flaw allows a remote attacker to cause a heap-buffer overflow, leading to a denial of service. |
| An out-of-memory flaw was found in libtiff that could be triggered by passing a crafted tiff file to the TIFFRasterScanlineSize64() API. This flaw allows a remote attacker to cause a denial of service via a crafted input with a size smaller than 379 KB. |
| In the Linux kernel, the following vulnerability has been resolved:
pstore/ram: Check start of empty przs during init
After commit 30696378f68a ("pstore/ram: Do not treat empty buffers as
valid"), initialization would assume a prz was valid after seeing that
the buffer_size is zero (regardless of the buffer start position). This
unchecked start value means it could be outside the bounds of the buffer,
leading to future access panics when written to:
sysdump_panic_event+0x3b4/0x5b8
atomic_notifier_call_chain+0x54/0x90
panic+0x1c8/0x42c
die+0x29c/0x2a8
die_kernel_fault+0x68/0x78
__do_kernel_fault+0x1c4/0x1e0
do_bad_area+0x40/0x100
do_translation_fault+0x68/0x80
do_mem_abort+0x68/0xf8
el1_da+0x1c/0xc0
__raw_writeb+0x38/0x174
__memcpy_toio+0x40/0xac
persistent_ram_update+0x44/0x12c
persistent_ram_write+0x1a8/0x1b8
ramoops_pstore_write+0x198/0x1e8
pstore_console_write+0x94/0xe0
...
To avoid this, also check if the prz start is 0 during the initialization
phase. If not, the next prz sanity check case will discover it (start >
size) and zap the buffer back to a sane state.
[kees: update commit log with backtrace and clarifications] |
| A vulnerability was found in Linksys RE6500, RE6250, RE6300, RE6350, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. Affected by this vulnerability is the function AP_get_wireless_clientlist_setClientsName of the file mod_form.so. Performing manipulation of the argument clientsname_0 results in stack-based buffer overflow. The attack can be initiated remotely. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was identified in Linksys RE6500, RE6250, RE6300, RE6350, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. This affects the function AP_get_wired_clientlist_setClientsName of the file mod_form.so. The manipulation of the argument clientsname_0 leads to stack-based buffer overflow. The attack may be initiated remotely. The exploit is publicly available and might be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A security flaw has been discovered in Linksys RE6500, RE6250, RE6300, RE6350, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. This vulnerability affects the function RE2000v2Repeater_get_wired_clientlist_setClientsName of the file mod_form.so. The manipulation of the argument clientsname_0 results in stack-based buffer overflow. The attack may be launched remotely. The exploit has been released to the public and may be exploited. The vendor was contacted early about this disclosure but did not respond in any way. |
| An Out-of-bounds Write vulnerability in WatchGuard Fireware OS's CLI could allow an authenticated privileged user to execute arbitrary code via a specially crafted CLI command.This vulnerability affects Fireware OS 12.0 up to and including 12.11.4, 12.5 up to and including 12.5.13, and 2025.1 up to and including 2025.1.2. |